Advertisements
Advertisements
प्रश्न
Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.
उत्तर १
Let PM be the perpendicular drawn from the point P(2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1) = λ` ...(Say)
The coordinates of any point on the line are given by
x = – 1 + 2λ, y = 3 + 3λ, z = – 1 – λ
Let the coordinates of M be
(–1 + 2λ, 3 + 3λ, –1 – λ) ...(1)
The direction ratios of PM are
–1 + 2λ – 2, 3 + 3λ + 3, –1 – λ –1
i.e. 2λ – 3, 3λ + 6, – λ – 2
The direction ratios of the given line are 2, 3, –1.
Since PM is perpendicular to the given line, we get
2(2λ – 3) + 3(3λ + 6) – 1(– λ – 2) = 0
∴ 4λ – 6 + 9λ + 18 + λ + 2 = 0
∴ 14λ + 14 = 0
∴ λ = – 1.
Put λ = – 1 in (1), the coordinates of M are
(– 1 – 2, 3 – 3, – 1 + 1) i.e. (– 3, 0, 0).
∴ length of perpendicular from P to the given line
= PM
= `sqrt((- 3 - 2)^2 + (0 + 3)^2 + (0 - 1)^2)`
= `sqrt((25 + 9 + 1)`
= `sqrt(35) "units"`.
उत्तर २
We know that the perpendicular distance from the point
`"P"|barα| "to the line" bar"r" = bar"a" + λbar"b"` is given by
`sqrt(|barα - bar"a"|^2 - [((barα - bara).barb)/[|bar"b"|)]^2` ...(1)
Here, `barα = 2hat"i" - 3hat"j" + hat"k", bar"a" = -hat"i" + 3hat"j" - hat"k", bar"b" = 2hat"i" + 3hat"j" - hat"k"`
∴ `barα - bar"a" = (2hat"i" - 3hat"j" + hat"k") - (-hat"i" + 3hat"j" - hat"k")`
= `3hat"i" - 6hat"j" + 2hat"k"`
∴ `|barα - bar"a"|^2` = 32 + (– 6)2 + 22 = 9 + 36 + 4 = 49
Also, `(barα - bar"a").bar"b" = (3hat"i" - 6hat"j" + 2hat"k").(2hat"i" + 3hat"j" - hat"k")`
= (3)(2) + (– 6)(3) + (2)(– 1)
= 6 – 18 – 2
= – 14
`|bar"b"| = sqrt(2^2 + 3^2 + (-1)^2) = sqrt(14)`
Substitutng these values in (1), we get
length of perpendicular from P to given line
= PM
= `sqrt(49 - ((-14)/sqrt(14))^2`
= `sqrt(49 - 14)`
= `sqrt(35) "units"`.
APPEARS IN
संबंधित प्रश्न
A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.
If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.
Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.
Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.
Choose correct alternatives :
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is
The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
Choose correct alternatives :
The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is
Choose correct alternatives :
The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is
Solve the following :
Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0
Solve the following :
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 3y + 6z = 49.
If the planes 2x – my + z = 3 and 4x – y + 2z = 5 are parallel then m = ______
The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______
Find the direction ratios of the normal to the plane 2x + 3y + z = 7
Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0
If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.
The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is ______
XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______
The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______
The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______
If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.
Let the line `(x - 2)/3 = (y - 1)/(-5) = (z + 2)/2` lie in the plane x + 3y - αz + β = 0. Then, (α, β) equals ______
If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______
The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle `pi/4` with plane x + y = 3, are ______.
The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.
If plane x + ay + z = 4 has equal intercepts on axes, then 'a' is equal to ______.
Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.
Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.
Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.
The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.
Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.
Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15