मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.

बेरीज

उत्तर

Equation of the line passing through the points (x,1, y1, z1) and (x2, y2, z2) is 
`(x - x_1)/(x_2 - x_1) = (y - y_1)/(y_2 - y_1) = (z - z_1)/(z_2 - z_1)`
∴ the equation of the line BC passing through the points B (0, –11, 13) and C)2, –3,1) is
`(x - 0)/(2 - 0) = (y + 11)/(-3 + 11) = (z - 13)/(1 - 13)`

i.e. `x/(2) = (y + 11)/(8) = (z - 13)/(-12) = lambda`     ..(Say)
AD is the perpendicular from the point  A(1, 0, 4) to the line BC.
The coordinates of any point on the line BC are given by 
x = 2λ, y = –11 + 8λ, z = 13 – 12λ
Let the coordinates of D be (2λ, – 11 + 8λ, 13 – 12λ) ...(1)
∴ the direcion ratio of AD are
2λ – 1, λ 11 + 8λ – 0, 13 – 12λ –  4
i.e. 2λ – 1, – 11 + 8λ, 9 – 12λ
The direction ratios of the line BC are 2, 8, – 12.
Since AD is perpendicular to BC, we get
2(2λ – 1) + 8(– 11 + 8λ) – 12(9 – 12λ) = 0
∴ 4λ – 2 – 88 + 64λ – 108 + 144λ = 0
∴ 212λ – 198 = 0
∴ λ = `(198)/(212) = (99)/(106)`
Putting λ = `(99)/(106)` in (1), the coordinates of D are 
`(198/106, -11 + 792/106, 13 - 1188/106)`

i.e. `(198/106, (-374)/106, 190/106)`,

i.e. `(99/53, (-187)/53, 95/53)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Line and Plane - Exercise 6.2 [पृष्ठ २०७]

APPEARS IN

संबंधित प्रश्‍न

Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.


Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.


Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.


Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.


Choose correct alternatives :

The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is


Choose correct alternatives :

The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is


Solve the following :

Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0


If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 


The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______ 


Find the direction ratios of the normal to the plane 2x + 3y + z = 7


Find the vector equation of a plane at a distance 6 units from the origin and to which vector `2hat"i" - hat"j" + 2hat"k"` is normal


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______


Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.


If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.


XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______ 


Equation of the plane perpendicular to the line `x/1 = y/2 = z/3` and passing through the point (2, 3, 4) is ______


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______ 


The distance of the point (1, 0, 2) from the point of intersection of the line `(x - 2)/3 = (y + 1)/4 = (z - 2)/12` and the plane x - y + z = 16, is ______ 


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.


Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Reduce the equation `barr*(3hati - 4hatj + 12hatk)` = 3 to the normal form and hence find the length of perpendicular from the origin to the plane.


Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.


The perpendicular distance of the plane `bar r. (3 hat i + 4 hat j + 12 hat k) = 78` from the origin is ______.


A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.


Answer the following questions.

  1. Find the equation of the plane containing the points A, B and C.
  2. Find the equation of the line PQ.
  3. Calculate the height of the tower.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×