Advertisements
Advertisements
प्रश्न
Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.
उत्तर
The equation of the plane is
6x – 2y + 3z – 7 = 0
∴ its vector equation is
`bar"r".(6hat"i" - 2hat"j" + 3hat"k")` = 7 ...(1)
where `bar"r" = xhat"i" + yhat"j" + zhat"k"`
∴ `bar"n" = 6hat"i" - 2hat"j" + 3hat"k"` is normal to the plane.
`|bar"n"| = sqrt(6^2 + (-2)^2 + 3^2)`
= `sqrt(49)`
= 7
Unit vector along `bar"n"` is
`hat"n" = bar"n"/|bar"n"|= (6hat"i" - 2hat"j" + 3hat"k")/(7)`
Dividing bothsides of (1) by 7, we get
`bar"r".((6hat"i" - 2hat"j" + 3hat"k")/7) = (7)/(7)`
∴ `bar"r".hat"n"`= 1
Comparing with normal form of equation of the plane `hat"r".hat"n" = p` it follows that length of perpendicular from origin is 1 unit.
Alternative Method :
The equation of the plane is 6x – 2y + 3z – 7 = 0
i.e. `(6/(6^2 + (-2)^2 + 3))x - (2/(sqrt(6^2) + (-2)^2 + 3^2))y + ((3)/(sqrt(6^2 + (-2)^2 + 3^2)))z = 7/(sqrt(6^2 + (-2)^2 + 3)`
i.e. `(6)/(7)x -(2)/(7)y + (3)/(7)z = (7)/(7)` = 1
This is the normal form of the equation of plane.
∴ perpendicular distance of the origin frm the plane is p = 1 unit.
APPEARS IN
संबंधित प्रश्न
Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.
Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.
Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
Choose correct alternatives :
The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is
Solve the following :
Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.
The equation of X axis is ______
Find the direction ratios of the normal to the plane 2x + 3y + z = 7
If the normal to the plane has direction ratios 2, −1, 2 and it’s perpendicular distance from origin is 6, find its equation
If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______
The equation of the plane passing through the point (– 1, 2, 1) and perpendicular to the line joining the points (– 3, 1, 2) and (2, 3, 4) is ______.
Equation of the plane passing through A(-2, 2, 2), B(2, -2, -2) and perpendicular to x + 2y - 3z = 7 is ______
The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is ______
The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______
Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.
Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______
If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.
XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______
The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______
The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.
If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______
The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle `pi/4` with plane x + y = 3, are ______.
The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.
The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.
The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.
Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.
If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.
Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.
The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.
The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.
If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.
Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.
A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.
Answer the following questions.
- Find the equation of the plane containing the points A, B and C.
- Find the equation of the line PQ.
- Calculate the height of the tower.