मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following : Reduce the equation rijkr¯.(6i^+8j^+24k^) = 13 normal form and hence find(i) the length of the perpendicular from the origin to the plane.(ii) direction cosines of the normal. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.

बेरीज

उत्तर

The normal form of equation of a plane is `bar"r".hat"n" = p` where `hat"n"` is unit vector along the normal and p is the length of perpendicular drawn from origin to the plane.

Given pane is `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13       ...(1)

`bar"n" = 6hat"i" + 8hat"j" + 24hat"k"` is normal to the plane

∴ `|bar"n"| = sqrt(6^2 + 8^2 +24^2) = sqrt(36 + 64 + 576) = sqrt(676) = 26`
Dividing both sides of (1) by 26,  get

`bar"r".(6/26hat"i" + 8/26hat"j" + 24/26hat"k") =  (13)/(26)`

`bar"r".(3/13hat"i" + 4/13hat"j" + 12/13hat"k") = 1/2`

This is the normal form of the equation of plane.
Comparing with `bar"r".hat"n" = p`,
(i) the length of the perpendicular from the origin to plane is `(1)/(2)`.
(ii) direction cosines of the normal are `(3)/(13),(4)/(13),(12)/(13)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Line and Plane - Miscellaneous Exercise 6 B [पृष्ठ २२५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Line and Plane
Miscellaneous Exercise 6 B | Q 4 | पृष्ठ २२५

संबंधित प्रश्‍न

Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Choose correct alternatives :

The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


Choose correct alternatives :

The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______  


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


Solve the following :

Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0


The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______ 


Find the direction ratios of the normal to the plane 2x + 3y + z = 7


Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5


Show that the lines `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` intersect each other.also find the coordinates of the point of intersection


The equation of the plane passing through the point (– 1, 2, 1) and perpendicular to the line joining the points (– 3, 1, 2) and (2, 3, 4) is ______.


Equation of the plane passing through A(-2, 2, 2), B(2, -2, -2) and perpendicular to x + 2y - 3z = 7 is ______ 


Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.


The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______ 


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______ 


A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______ 


The distance of the point (1, 0, 2) from the point of intersection of the line `(x - 2)/3 = (y + 1)/4 = (z - 2)/12` and the plane x - y + z = 16, is ______ 


Let the line `(x - 2)/3 = (y - 1)/(-5) = (z + 2)/2` lie in the plane x + 3y - αz + β = 0. Then, (α, β) equals ______ 


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle `pi/4` with plane x + y = 3, are ______.


If plane x + ay + z = 4 has equal intercepts on axes, then 'a' is equal to ______.


Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


Reduce the equation `barr*(3hati - 4hatj + 12hatk)` = 3 to the normal form and hence find the length of perpendicular from the origin to the plane.


The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.


Answer the following questions.

  1. Find the equation of the plane containing the points A, B and C.
  2. Find the equation of the line PQ.
  3. Calculate the height of the tower.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×