Advertisements
Advertisements
Question
Solve the following :
Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.
Solution
The normal form of equation of a plane is `bar"r".hat"n" = p` where `hat"n"` is unit vector along the normal and p is the length of perpendicular drawn from origin to the plane.
Given pane is `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 ...(1)
`bar"n" = 6hat"i" + 8hat"j" + 24hat"k"` is normal to the plane
∴ `|bar"n"| = sqrt(6^2 + 8^2 +24^2) = sqrt(36 + 64 + 576) = sqrt(676) = 26`
Dividing both sides of (1) by 26, get
`bar"r".(6/26hat"i" + 8/26hat"j" + 24/26hat"k") = (13)/(26)`
`bar"r".(3/13hat"i" + 4/13hat"j" + 12/13hat"k") = 1/2`
This is the normal form of the equation of plane.
Comparing with `bar"r".hat"n" = p`,
(i) the length of the perpendicular from the origin to plane is `(1)/(2)`.
(ii) direction cosines of the normal are `(3)/(13),(4)/(13),(12)/(13)`.
APPEARS IN
RELATED QUESTIONS
Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.
A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.
If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.
Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
Choose correct alternatives :
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is
Choose correct alternatives :
The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`
Choose correct alternatives :
The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
Choose correct alternatives :
The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is
If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______
Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5
Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0
Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0
If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.
If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______
Equation of the plane passing through A(-2, 2, 2), B(2, -2, -2) and perpendicular to x + 2y - 3z = 7 is ______
The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______
Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______
The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______
The distance of the point (1, 0, 2) from the point of intersection of the line `(x - 2)/3 = (y + 1)/4 = (z - 2)/12` and the plane x - y + z = 16, is ______
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.
The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.
If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______
The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.
If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.
Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.
The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.
What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?
Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.
Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.
The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.
Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15
The perpendicular distance of the plane `bar r. (3 hat i + 4 hat j + 12 hat k) = 78` from the origin is ______.