English

Solve the following : Reduce the equation rijkr¯.(6i^+8j^+24k^) = 13 normal form and hence find(i) the length of the perpendicular from the origin to the plane.(ii) direction cosines of the normal. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.

Sum

Solution

The normal form of equation of a plane is `bar"r".hat"n" = p` where `hat"n"` is unit vector along the normal and p is the length of perpendicular drawn from origin to the plane.

Given pane is `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13       ...(1)

`bar"n" = 6hat"i" + 8hat"j" + 24hat"k"` is normal to the plane

∴ `|bar"n"| = sqrt(6^2 + 8^2 +24^2) = sqrt(36 + 64 + 576) = sqrt(676) = 26`
Dividing both sides of (1) by 26,  get

`bar"r".(6/26hat"i" + 8/26hat"j" + 24/26hat"k") =  (13)/(26)`

`bar"r".(3/13hat"i" + 4/13hat"j" + 12/13hat"k") = 1/2`

This is the normal form of the equation of plane.
Comparing with `bar"r".hat"n" = p`,
(i) the length of the perpendicular from the origin to plane is `(1)/(2)`.
(ii) direction cosines of the normal are `(3)/(13),(4)/(13),(12)/(13)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Miscellaneous Exercise 6 B [Page 225]

APPEARS IN

RELATED QUESTIONS

Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.


A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.


Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.


Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.


Choose correct alternatives :

If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is 


Choose correct alternatives :

The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`


Choose correct alternatives :

The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are


Choose correct alternatives :

The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 


Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5


Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


Equation of the plane passing through A(-2, 2, 2), B(2, -2, -2) and perpendicular to x + 2y - 3z = 7 is ______ 


The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______


Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______


The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______ 


The distance of the point (1, 0, 2) from the point of intersection of the line `(x - 2)/3 = (y + 1)/4 = (z - 2)/12` and the plane x - y + z = 16, is ______ 


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.


The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.


If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.


Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.


The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.


What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.


The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.


Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15


The perpendicular distance of the plane `bar r. (3 hat i + 4 hat j + 12 hat k) = 78` from the origin is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×