English

Find the perpendicular distance of the point (1, 0, 0) from the line x-12=y+1-3=z+108 Also find the co-ordinates of the foot of the perpendicular. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.

Sum

Solution

Let foot of the perpendicular 'M' is drawn from point p(1, 0, 0) the line L: `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)`

∴ x1 = 1, y1 = −1, z1 = −10

Direction ratios are 2, 3, -8

let L1: `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)`

∴ Parametrics co-ordinates (2λ + 1, −3λ − 1, 8λ −10)

∴ The direction ratio of PM is (2λ, −3λ − 1, 8λ −10)

∴ PM is ⊥ to the given line` (2λhati(−3λ −1)hatj + (8λ −10)hatk) * (2hati - 3hatj + 8hatk) = 0`

∴ 4λ + 9λ + 3 + 64λ − 80 = 0

∴ 77λ − 77 = 0

∴ λ = 1

∴ Co-ordinates of the foot of the perpendicular are (3, −4, −2)

∴ d = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2`

= `sqrt((2)^2 - (-4)^2+ (-2)^2`

= `sqrt (4 + 16 + 4)`

= `sqrt24`

∴ d = `2sqrt6` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Exercise 6.2 [Page 207]

RELATED QUESTIONS

Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.


A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Choose correct alternatives :

The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are


The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


If the planes 2x – my + z = 3 and 4x – y + 2z = 5 are parallel then m = ______ 


If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 


The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______ 


Find the direction ratios of the normal to the plane 2x + 3y + z = 7


Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5


If the normal to the plane has direction ratios 2, −1, 2 and it’s perpendicular distance from origin is 6, find its equation


Find the vector equation of a plane at a distance 6 units from the origin and to which vector `2hat"i" - hat"j" + 2hat"k"` is normal


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.


The equation of a plane containing the point (1, - 1, 2) and perpendicular to the planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8 is ______.


If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.


The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______ 


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______ 


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


If the line `(x + 1)/2 = (y - 5)/3 = (z - "p")/6` lies in the plane 3x – 14y + 6z + 49 = 0, then the value of p is ______.


The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?


If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.


Answer the following questions.

  1. Find the equation of the plane containing the points A, B and C.
  2. Find the equation of the line PQ.
  3. Calculate the height of the tower.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×