English

Find the co-ordinates of the foot of the perpendicular drawn from the point 2i^-j^+5k^ to the line λr¯=(11i^-2j^-8k^)+λ(10i^-4j^-11k^). Also find the length of the perpendicular. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.

Sum

Solution

Let M be the foot of perpendicular drawn from the point `P(2hati - hatj + 5hatk)` on the line.

`barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk)`

Let the position vector of the point M be

`(11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk)`

= `(11 + 10λ)hati + (-2 - 4λ)hatj + (-8 - 11λ)hatk`.

Then PM = Position vector of M – Position vector of P

= `[(11 + 10λ)hati + (-2 - 4λ)hatj + (-8 - 11λ)hatk] - (2hati -hatj + 5hatk)`

= `(9 + 10λ)hati + (-1 - 4λ)hatj + (-13 - 11λ)hatk`

Since PM is perpendicular to the given line which is parallel to `barb = 10hati - 4hatj - 11hatk`,

PM ⊥ `barb`

∴ PM.`barb` = 0

∴ `[(9 + 10λ)hati + (-1 - 4λ) - 11(-13 - 11λ)hatk].(10hati - 4hatj - 11hatk)` = 0

∴ 10(9 + 10λ) – 4(–1 – 4λ) – 11(13 – 11λ) = 0

∴ 90 + 100λ + 4 + 16λ + 143 + 121λ = 0

∴ 237λ + 237 = 0

∴ λ = – 1

Putting this value of λ, we get the position vector of M as `hati + 2hatj + 3hatk`.

∴ Coordinates of the foot of perpendicular M are (1, 2, 3).

Now, PM = `(hati + 2hatj + 3hatk) - (2hati - hatj + 5hatk)`

= `-hati + 3hatj - 2hatk`

∴ |PM| = `sqrt((-1)^2 + (3)^2 + (-2)^2`

= `sqrt(1 + 9 + 4)`

= `sqrt(14)`

Hence, the coordinates of the foot of perpendicular are (1, 2, 3) and length of perpendicular = `sqrt(14)` units.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Exercise 6.2 [Page 207]

RELATED QUESTIONS

Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.


A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.


Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.


Choose correct alternatives :

The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are


Choose correct alternatives :

Equation of X-axis is ______.


Choose correct alternatives :

The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


Choose correct alternatives :

The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is


Solve the following :

Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0


Solve the following :

Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 3y + 6z = 49.


The equation of X axis is ______ 


The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______ 


Find the direction ratios of the normal to the plane 2x + 3y + z = 7


Show that the lines `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` intersect each other.also find the coordinates of the point of intersection


If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


The equation of the plane passing through the point (– 1, 2, 1) and perpendicular to the line joining the points (– 3, 1, 2) and (2, 3, 4) is ______.


The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______


Equation of the plane perpendicular to the line `x/1 = y/2 = z/3` and passing through the point (2, 3, 4) is ______


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______ 


The distance of the point (1, 0, 2) from the point of intersection of the line `(x - 2)/3 = (y + 1)/4 = (z - 2)/12` and the plane x - y + z = 16, is ______ 


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.


Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.


Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.


What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?


If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.


Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.


The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.


Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


The perpendicular distance of the plane `bar r. (3 hat i + 4 hat j + 12 hat k) = 78` from the origin is ______.


A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.


Answer the following questions.

  1. Find the equation of the plane containing the points A, B and C.
  2. Find the equation of the line PQ.
  3. Calculate the height of the tower.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×