Advertisements
Advertisements
Question
Show that the lines `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` intersect each other.also find the coordinates of the point of intersection
Solution
The variable point on the line `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` is `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` = λ
∴ x + 1 = – 10λ, y + 3 = – λ, z – 4 = λ
∴ x = – 10λ –1, y = – λ – 3, z = λ + 4 .......(i)
Also, the variable point on the line
`(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` is
`(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` = µ
∴ x + 10 = –µ, y + 1 = –3µ, z – 1 = 4µ
∴ x = – µ – 10, y = – 3µ – 1, z = 4µ + 1 .......(ii)
Given lines intersect each other if there exist some values of λ and µ for which
–10λ – 1 = – µ – 10, – λ – 3
= – 3µ –1 and λ + 4
= 4µ + 1
∴ 10λ – µ = 9 .......(iiii)
λ – 3µ = – 2 .......(iv)
λ – 4µ = – 3 .......(v)
Subtracting equation (iv) from (v), we get
λ – 4µ = –3
λ – 3µ = –2
– + = +
– µ = –1
∴ µ = 1
Substituting µ = 1 in (iv), we get
λ – 3(1) = – 2
∴ λ = – 2 + 3
∴ λ = 1
Since the values of λ and µ exist, the given lines intersect each other. To find the point of intersection, substituting the value of λ = 1 in equation (i), we get
x = –10 – 1, y = –1 – 3, z = 1 + 4
∴ x = –11, y = – 4, z = 5
∴ Point of intersection of the lines is (x, y, z) i.e., (–11, – 4, 5).
RELATED QUESTIONS
Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.
A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.
Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.
Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
Choose correct alternatives :
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is
Choose correct alternatives :
The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are
Choose correct alternatives :
Equation of X-axis is ______.
The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.
Choose correct alternatives :
The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______
Choose correct alternatives :
The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is
Solve the following :
Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0
Solve the following :
Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.
Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0
Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, −2) at right angles
If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______
The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______
If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.
XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______
Equation of the plane perpendicular to the line `x/1 = y/2 = z/3` and passing through the point (2, 3, 4) is ______
The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______
The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.
The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.
Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.
Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y + 2z = 16. Let T be a plane passing through the point Q and contains the line `vecr = -hatk + λ(hati + hatj + 2hatk)`, λ ∈ R. Then, which of the following points lies on T?
Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.
If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.
The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.
What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?
Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.
Reduce the equation `barr*(3hati - 4hatj + 12hatk)` = 3 to the normal form and hence find the length of perpendicular from the origin to the plane.
Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.
Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15