मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If the lines andx-12=y+13=z-14andx-31=y-k2=z1 intersect each other, then find k. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.

बेरीज

उत्तर

The lines `(x - x_1)/l_1 = (y - y_1)/m_1 = (z - z_1)/n_1 and (x - x_2)/(l_2) = (y - y_2)/m_2 = (z - z_2)/n_2`

intersect, if `|(x_2 - x_1, y_2 - y_1,z_2 - z_1),(l_1, m_1, n_1),(l_2, m_2, n_2)|` = 0

The equations of the given lines are

`(x - 1)/(2) = (y +1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1`

∴ x1 = 1, y1 = –1, z1 = 1, x2 = 3, y2 = k, z2 = 0,

l1 = 2, m1 = 3, n1 = 4, l2 = 1, m2 = 2, n2 = 1.

Since these lines intersect, we get

`|(2, k + 1, -1),(2, 3, 4),(1, 2, 1)|` = 0

∴ 2(3 – 8) – (k + 1)(2 – 4) – 1(4 – 3) = 0

∴ – 10 + 2(k + 1) – 1 = 0

∴ 2(k + 1) = 11

∴ k + 1  `11/2`

∴ k = `9/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Line and Plane - Exercise 6.2 [पृष्ठ २०७]

APPEARS IN

संबंधित प्रश्‍न

Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.


Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.


Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.


Choose correct alternatives :

If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is 


Choose correct alternatives :

Equation of X-axis is ______.


Choose correct alternatives :

The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


Solve the following :

Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.


The equation of X axis is ______ 


If the planes 2x – my + z = 3 and 4x – y + 2z = 5 are parallel then m = ______ 


If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 


If the normal to the plane has direction ratios 2, −1, 2 and it’s perpendicular distance from origin is 6, find its equation


Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0


Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, −2) at right angles


A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______ 


The distance of the point (1, 0, 2) from the point of intersection of the line `(x - 2)/3 = (y + 1)/4 = (z - 2)/12` and the plane x - y + z = 16, is ______ 


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.


Let the line `(x - 2)/3 = (y - 1)/(-5) = (z + 2)/2` lie in the plane x + 3y - αz + β = 0. Then, (α, β) equals ______ 


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.


The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.


The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.


Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.


Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y + 2z = 16. Let T be a plane passing through the point Q and contains the line `vecr = -hatk + λ(hati + hatj + 2hatk)`, λ ∈ R. Then, which of the following points lies on T?


Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.


Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?


The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.


Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×