Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, −2) at right angles
उत्तर
Let M be the midpoint of segment AB.
A ≡ (2, 3, 6) and B ≡ (4, 3, −2) ......[Given]
By midpoint formula, we get
M ≡ `((x_1+ x_2)/2, (y_1 + y_2)/2, (z_1 +z_2)/2)`
= `((2 + 4)/2, (3 + 3)/2, (6 - 2)/2)`
M ≡ (3, 3, 2)
Since plane bisects the seg AB at right angle,
`bar"n" = bar"AB" = bar"b" - bar"a"`
∴ `bar"n" = 2hat"i" + 0hat"j" - 8hat"k"`
Equation of a plane passing through point M(3, 3, 2) and having a normal `bar"n"` is `bar"r"*bar"n" = bar"m"*bar"n"`
∴ `bar"r"*(2hat"i" - 8hat"k") = (3hat"i" + 3hat"j" + 2hat"k")*(2hat"i" - 8hat"k")`
∴ `bar"r"*(2hat"i" - 8hat"k") = (3)(2) + (3)(0) + (2)(-8)`
∴ `bar"r"*(2hat"i" - 8hat"k")` = – 10
∴ `bar"r"*(hat"i" - hat"k")` = – 5
APPEARS IN
संबंधित प्रश्न
Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.
Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.
Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.
Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.
Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.
Choose correct alternatives :
The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`
Choose correct alternatives :
Equation of X-axis is ______.
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
Choose correct alternatives :
The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is
Choose correct alternatives :
The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is
Solve the following :
Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.
The equation of X axis is ______
The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______
Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0
Find the vector equation of a plane at a distance 6 units from the origin and to which vector `2hat"i" - hat"j" + 2hat"k"` is normal
Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0
If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.
Equation of the plane passing through A(-2, 2, 2), B(2, -2, -2) and perpendicular to x + 2y - 3z = 7 is ______
The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is ______
The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______
Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.
The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______
The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______
If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.
Let the line `(x - 2)/3 = (y - 1)/(-5) = (z + 2)/2` lie in the plane x + 3y - αz + β = 0. Then, (α, β) equals ______
If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______
The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.
Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.
If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.
If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.
Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.