Advertisements
Advertisements
प्रश्न
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
उत्तर
Let `bar"a" = hat"i" + 2hat"j" + 3hat"k", bar"b"_1 = hat"i" + hat"j" + hat"k", bar"b"_2 = 2hat"i" - hat"j" + hat"k"`
The required line is perpendicular to `bar"b"_1 = hat"i" + hat"j" + hat"k"` and `bar"b"_2 = 2hat"i" - hat"j" + hat"k"`
∴ It is parallel to `bar"b" = bar"b"_1 xx bar"b"_2`
Now, `bar"b"_1 xx bar"b"_2 = |(hat"i", hat"j", hat"k"),(1, 1, 1),(2, -1, 1)|`
= `hat"i"(1 + 1) - hat"j"(1 - 2) + hat"k"(-1 - 2)`
= `2hat"i" + hat"j" - 3hat"k"`
The vector equation of a line passing through a point with position vector `bar"a"` and parallel to `bar"b"` is `bar"r" = bar"a" + lambdabar"b"`
∴ Vector equation of the required line is
`bar"r" = (hat"i" + 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" - 3hat"k")` .......(i)
Putting `bar"r" = xhat"i" + yhat"j" + zhat"k"` in (i), we get
`xhat"i" + yhat"j" + zhat"k" = (1 + 2lambda)hat"i" + 2(2 + lambda)hat"j" + (3 - 3lambda)hat"k"`
Equating the coefficients of `hat"i", hat"j"` and `hat"k"`, we get
x = 1 + 2λ, y = 2 + λ, z = 3 – 3λ
∴ λ = `(x - 1)/2`, λ = `(y - 2)/1`, λ = `(z - 3)/(-3)`
∴ `(x- 1)/2 = (y - 2)/1 = (z - 3)/(-3)`,
which is required cartesian equation.
APPEARS IN
संबंधित प्रश्न
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the coordinates of points on th line `(x - 1)/(1) = (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
Solve the following :
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
A plane makes non zero intercepts a, b, c on the coordinate axes. Show that the vector equation of the plane is `bar"r".(bchat"i" + cahat"j" + abhat"k")` = abc.
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Equation of Z-axis is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______
The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.
What is the Cartesian product of A= {l, 2} and B= {a, b}?
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).
Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.