Advertisements
Advertisements
प्रश्न
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
उत्तर
The cartesian equation of the plane
`bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0 is 6x + 8y + 7z = 0
The required plane is parallel to it
∴ its cartesian equation is
6x + 8y + 7z = p ...(1)
A(7, 8, 6) lies on it and hence satisfies its equation
∴ (6)(7) + (8)(8) + (7)(6) = p
i.e., p = 42 + 64 + 42 = 148.
∴ from (1), the cartesian equation of the required plane is 6x + 8y + 7z = 148.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k" "and parallel to vector" 4hat"i" - hat"j" + 2hat"k"`.
Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
A plane makes non zero intercepts a, b, c on the coordinate axes. Show that the vector equation of the plane is `bar"r".(bchat"i" + cahat"j" + abhat"k")` = abc.
Solve the following :
Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`
Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2
Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles
Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`
The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______
Equation of Z-axis is ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.
Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).