हिंदी

Verify if the point having position vector 4i^-11j^+2k^ lies on the line r¯=(6i^-4j^+5k^)+μ(2i^+7j^+3k^) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`

योग

उत्तर

`bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`

Replacing `bar"r"` by `4hat"i" - 11hat"j" + 2hat"k"`, we get

`4hat"i" - 11hat"j" + 2hat"k" = 6hat"i" - 4hat"j" + 5hat"k" + lambda(2hat"i" + 7hat"j" + 3hat"k")`

∴ 6 + 2lambda = 4, – 4 + 7λ

= – 11, 5 + 3λ

= 2

From each of these equations, we get the same value of λ.

∴ The given point lies on the given line.

shaalaa.com
Vector and Cartesian Equations of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Line and Plane - Very Short Answers

संबंधित प्रश्न

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"  "and perpendicular to vectors"  hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.


Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k"  "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`


Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Solve the following :

A plane makes non zero intercepts a, b, c on the coordinate axes. Show that the vector equation of the plane is `bar"r".(bchat"i" + cahat"j" + abhat"k")` = abc.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.


Solve the following :

Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.


Find the Cartesian equation of the line passing through  A(1, 2, 3) and having direction ratios 2, 3, 7


Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.


Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form


Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles


Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i"  - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`


Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes


The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.


The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.


Equation of Z-axis is ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×