Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
उत्तर
The vector equation of the plane passing through the point A`(bara)` and parallel to the vectors `bar"b" and bar"c"` is
`bar"r".(bar"b" xx bar"c") = bar"a".(bar"b" xx bar"c")` ...(1)
Here, `bar"a" = -2hat"i" + 7hat"j" + 5hat"k"`
`bar"b" = 4hat"i" - hat"j" + 3hat"k"`,
`bar"c" = hat"i" + hat"j" + hat"k"`
∴ `bar"b" xx bar"c" = |(hat"i", hat"j", hat"k"),(4, -1, 3),(1, 1, 1)|`
= `(-1 - 3)hat"i" - (4 - 3)hat"j" + (4 - (-1))hat"k"`
= `-4hat"i" - hat"j" + 5hat"k"`
∴ `bar"a".(bar"b" xx bar"c") = (-2hat"i" + 7hat"j" +5hat"k").(-4hat"i" - hat"j" + 5hat"k")`
= (– 2)(– 4) + (7)(–1) + (5)(5)
= 8 – 7 + 25
= 1 + 25
= 26
∴ From (1), the vector equation of the required plane is `bar"r".(- 4hat"i" - hat"j" + 5hat"k")` = 26.
APPEARS IN
संबंधित प्रश्न
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Find the Cartesian equation of the line passing through A(1, 2, 3) and having direction ratios 2, 3, 7
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find the direction ratios of the line perpendicular to the lines
`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`
Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form
Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane
Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`
Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes
The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.
The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
What is the Cartesian product of A= {l, 2} and B= {a, b}?
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.