हिंदी

Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.

योग

उत्तर

The given line is `(x - 1)/(1) = (y - 2)/(1) = (z - 3)/(1) = lambda`                ...(Say)

∴ coordinates of any point on the line are x = `lambda + 1, y = lambda + 2, z = lambda + 3`

∴ position vector of any point on the line is `(lambda + 1)hat"i" + (lambda + 2)hat"j" + (lambda + 3)hat"k"`         ...(1)

If `bar"b"` is parallel to the given line whose direction ratios are 1, 1, 1 then `bar"b" = hat"i" + hat"j" + hat"k"`.

Let the required line passing through O meet the given line at M.

∴  position vector of M

= `bar"m" = (lambda + 1)hat"i" + (lambda + 2)hat"j" + (lambda + 3)hat"k"`         ...[By (1)]

The required line is perpendicular to given line

∴ `bar"OM".bar"b"` = 0

∴ `[(lambda + 1)hat"i" + (lambda + 2)hat"j" + (lambda + 3)hat"k"].(hat"i" + hat"j" + hat"k")` = 0

∴ `(lambda + 1) xx 1 + (lambda + 2) xx 1 + (lambda + 3) xx 1` = 0

∴ `3lambda + 6` = 0

∴ λ = – 2

∴ `bar"m" = (-2 + 1)hat"i" + (-2 + 2)hat"j" + (-2 + 3)hat"k" = -hat"i" + hat"k"`

The vector equation of the line passing through `"A"(bara) and "B"(barb) "is"  bar"r" = bar"a" + lambda(bar"b" - bar"a"), lambda` is  a scalar.

∴ the vector equation of the line passing through `"O"(bar"0") and "M"(bar"m") "is" bar"r" = bar"0" + lambda(bar"m" - bar"0") = lambda(-hat"i" + hat"k")` where λ is a scalar.

Hence, vector equation of the required line is `bar"r" = lambda(-hat"i" + hat"k")`.

shaalaa.com
Vector and Cartesian Equations of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Line and Plane - Miscellaneous Exercise 6 A [पृष्ठ २०८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Line and Plane
Miscellaneous Exercise 6 A | Q 10 | पृष्ठ २०८

संबंधित प्रश्न

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"  "and perpendicular to vectors"  hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.


Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.


Find the vector equation of the line which passes through the origin and the point (5, –2, 3).


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.


Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.


If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Solve the following :

Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.


Solve the following :

The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Find the Cartesian equation of the line passing through  A(1, 2, 3) and having direction ratios 2, 3, 7


Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.


Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)


Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`


Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter


Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2


Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)


Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i"  - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`


The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.


The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×