Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
उत्तर
The vector equation of the plane passing through `"A"(bara), "B"(barb), "C"(barc)`, where A, B, C are non-collinear is `bar"r".(bar"AB" xx bar"AC") = bar"a".(bar"AB" xx bar"AC")` ...(1)
The required plane makes intercepts 1, 1, 1 on the coordinate axes.
∴ It passes through the three non-collinear points
A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1)
∴ `bar"a" = hat"i", bar"b" = hat"j", bar"c" = hat"k"`
`bar"AB" = bar"b" - bar"a" = hat"j" - hat"i" = -hat"i" + hat"j"`
∴ `bar"AC" = bar"c" - bar"a" = hat"k" - hat"i" = -hat"i" + hat"k"`
∴ `bar"AB" xx bar"AC" = |(hat"i", hat"j", hat"k"),(-1, 1, 0),(-1, 0, 1)|`
= `(1 - 0)hat"i" - (- 1 + 0)hat"j" + (0 + 1)hat"k"`
= `hat"i" + hat"j" + hat"k"`
Also, `bar"a".(bar"AB" xx bar"AC")` = `hat"i".(hat"i" + hat"j" + hat"k")`
= 1 × 1 + 0 × 1 + 0 × 1
= 1
∴ From (1), the vector equation of the required plane is `bar"r".(hat"i" + hat"j" + hat"k")` = 1.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k" "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.
Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.
Equation of Z-axis is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.
What is the Cartesian product of A= {l, 2} and B= {a, b}?
Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.