हिंदी

Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.

योग

उत्तर

4x – 3z + 5 = 0 can be written as

4x = `3z  – 5 = 3(z - 5/3)`

∴ `(4x)/(12) = (3(z - 5/3))/(12)`

∴ `x/(3) = (z - 5/3)/(4)`

∴ the cartesian equation of the line are

`x/(3) = (z - 5/3)/(4), y = 2`.

This line passes through the point `"A"(0,2, 5/3)` whose position vector is `bar"a" = 2hat"j" +  5/3hat"k"`

Also the line has direction ratio 3, 0, 4.

If `bar"b"` is a vector parallel to the line, then `bar"b" = 3hat"i" + 4hat"k"`

The vector equation of the line pasing through `"A"(bara) "and parallel to"  bar"b"  "is"  bar"r" = bar"a" + lambdabar"b"` where λ is a scalar.

∴ the vector equation of the required line is

`bar"r" = (2hat"j" + 5/3hat"k") + lambda(3hat"i" + 4hat"k")`.

shaalaa.com
Vector and Cartesian Equations of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Line and Plane - Miscellaneous Exercise 6 A [पृष्ठ २०८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Line and Plane
Miscellaneous Exercise 6 A | Q 21 | पृष्ठ २०८

संबंधित प्रश्न

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios  –3, 4, 2.


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.


Find the vector equation of the line which passes through the origin and the point (5, –2, 3).


Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.


Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Solve the following :

The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.


Solve the following :

Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.


Solve the following :

Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.


Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.


Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`


Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`


Find the Cartesian equation of the line passing through  A(1, 2, 3) and having direction ratios 2, 3, 7


Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)


Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.


What is the Cartesian product of A= {l, 2} and B= {a, b}?


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×