Advertisements
Advertisements
प्रश्न
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
उत्तर
4x – 3z + 5 = 0 can be written as
4x = `3z – 5 = 3(z - 5/3)`
∴ `(4x)/(12) = (3(z - 5/3))/(12)`
∴ `x/(3) = (z - 5/3)/(4)`
∴ the cartesian equation of the line are
`x/(3) = (z - 5/3)/(4), y = 2`.
This line passes through the point `"A"(0,2, 5/3)` whose position vector is `bar"a" = 2hat"j" + 5/3hat"k"`
Also the line has direction ratio 3, 0, 4.
If `bar"b"` is a vector parallel to the line, then `bar"b" = 3hat"i" + 4hat"k"`
The vector equation of the line pasing through `"A"(bara) "and parallel to" bar"b" "is" bar"r" = bar"a" + lambdabar"b"` where λ is a scalar.
∴ the vector equation of the required line is
`bar"r" = (2hat"j" + 5/3hat"k") + lambda(3hat"i" + 4hat"k")`.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).
Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Solve the following :
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane
Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles
Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes
The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
If line joining points A and B having position vectors `6overlinea - 4overlineb + 4overlinec` and `-4overlinec` respectively, and the line joining the points C and D having position vectors `-overlinea - 2overlineb - 3overlinec` and `overlinea + 2overlineb - 5overlinec` intersect, then their point of intersection is ______
If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.
Equation of Z-axis is ______
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.
Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.