Advertisements
Advertisements
प्रश्न
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
उत्तर
The line `bar"r" = (hat"i" + hat"j" - hat"k") + λ(2hat"i" - 2hat"j" + hat"k")` is parallel to the vector `bar"b" = 2hat"i" - 2hat"j" + hat"k"` and the line `bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")` is parallel to the vector. `bar"c" = hat"i" - 2hat"j" + 2hat"k"`.
The vector perpendicular to the vectors `bar"b" and bar"c"` is given by
`bar"b" xx bar"c" = |(hat"i" ), (2 -2 1),(1 -2 2)|`
`= hat"i"(-4 + 2) - hat"j"(4 - 1) + hat"k"(-4 + 2)`
`= -2hat"i" - 3hat"j" - 2hat"k"`
Since the required line is perpendicular to the given lines,
it is perpendicular to both `bar"b" and bar"c"`.
∴ It is parallel to `bar"b" xx bar"c"`
The equation of the line passing through `"A"(bara)` and parallel to `bar"b" and bar"c"` is
`bar"r" = bar"a" + λ(bar"b" xx bar"c")`, where λ is a scalar.
Here, `bar"a" = 3hat"i" - hat"j" + 2hat"k"`
∴ the equation of the required line is
`bar"r" = (3hat"i" - hat"j" + 2hat"k") + λ(-2hat"i" - 3hat"j" - 2hat"k")`
or
`bar"r" = (3hat"i" - hat"j" + 2hat"k") + mu(2hat"i" + 3hat"j" + 2hat"k")`, where μ = `-λ`.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the coordinates of points on th line `(x - 1)/(1) = (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).
Solve the following :
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the Cartesian equation of the line passing through A(1, 2, 3) and having direction ratios 2, 3, 7
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form
Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______
If line joining points A and B having position vectors `6overlinea - 4overlineb + 4overlinec` and `-4overlinec` respectively, and the line joining the points C and D having position vectors `-overlinea - 2overlineb - 3overlinec` and `overlinea + 2overlineb - 5overlinec` intersect, then their point of intersection is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______
The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.
A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.
What is the Cartesian product of A= {l, 2} and B= {a, b}?
Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.