Advertisements
Advertisements
प्रश्न
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
उत्तर
The equation `bar"r" = bar"a" + lambdabar"b" + mubar"c"` represents a plane passing through a point having position vector `bar"a"` and parallel to vectors `bar"b" and bar"c"`.
Here,
`bar"a" = 5hat"i" - 2hat"j" - 3hat"k",`
`bar"b" = hat"i" + hat"j" + hat"k"`,
`bar"c" = hat"i" - 2hat"j" + 3hat"k"`
∴ `bar"b" xx bar"c" = |(hat"i", hat"j", hat"k"),(1, 1, 1),(1, -2, 3)|`
= `(3 + 2)hat"i" - (3 - 1)hat"j" + (-2 - 1)hat"k"`
= `5hat"i" - 2hat"j" - 3hat"k"`
= `bar"a"`
Also,
`bar"a".(bar"b" xx bar"c") = bar"a".bar"a" = |bar"a"|^2`
= (5)2 + (– 2)2 + (3)2
= 38
The vector equation of the plane passing through A`(bara)` and parallel to `bar"b" and bar"c"` is
`bar"r".(bar"b" xx bar"c") = bar"a".(bar"b" xx bar"c")`
∴ The vector equation of the given plane is
`bar"r".(5hat"i" - 2hat"j" - 3hat"k")` = 38
If `bar"r" = xhat"i" + yhat"j" + zhat"k"`, then this equation becomes
`(xhat"i" + yhat"j" + zhat"k").(5hat"i" - 2hat"j" - 3hat"k")` = 38
∴ 5x – 2y – 3z = 38.
This is the cartesian equation of the required plane.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k" "and parallel to vector" 4hat"i" - hat"j" + 2hat"k"`.
Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
Find the coordinates of points on th line `(x - 1)/(1) = (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
Solve the following :
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find the direction ratios of the line perpendicular to the lines
`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane
The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.
If line joining points A and B having position vectors `6overlinea - 4overlineb + 4overlinec` and `-4overlinec` respectively, and the line joining the points C and D having position vectors `-overlinea - 2overlineb - 3overlinec` and `overlinea + 2overlineb - 5overlinec` intersect, then their point of intersection is ______
Equation of Z-axis is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.
Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`