Advertisements
Advertisements
Question
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Solution
The equation `bar"r" = bar"a" + lambdabar"b" + mubar"c"` represents a plane passing through a point having position vector `bar"a"` and parallel to vectors `bar"b" and bar"c"`.
Here,
`bar"a" = 5hat"i" - 2hat"j" - 3hat"k",`
`bar"b" = hat"i" + hat"j" + hat"k"`,
`bar"c" = hat"i" - 2hat"j" + 3hat"k"`
∴ `bar"b" xx bar"c" = |(hat"i", hat"j", hat"k"),(1, 1, 1),(1, -2, 3)|`
= `(3 + 2)hat"i" - (3 - 1)hat"j" + (-2 - 1)hat"k"`
= `5hat"i" - 2hat"j" - 3hat"k"`
= `bar"a"`
Also,
`bar"a".(bar"b" xx bar"c") = bar"a".bar"a" = |bar"a"|^2`
= (5)2 + (– 2)2 + (3)2
= 38
The vector equation of the plane passing through A`(bara)` and parallel to `bar"b" and bar"c"` is
`bar"r".(bar"b" xx bar"c") = bar"a".(bar"b" xx bar"c")`
∴ The vector equation of the given plane is
`bar"r".(5hat"i" - 2hat"j" - 3hat"k")` = 38
If `bar"r" = xhat"i" + yhat"j" + zhat"k"`, then this equation becomes
`(xhat"i" + yhat"j" + zhat"k").(5hat"i" - 2hat"j" - 3hat"k")` = 38
∴ 5x – 2y – 3z = 38.
This is the cartesian equation of the required plane.
APPEARS IN
RELATED QUESTIONS
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.
Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
A plane makes non zero intercepts a, b, c on the coordinate axes. Show that the vector equation of the plane is `bar"r".(bchat"i" + cahat"j" + abhat"k")` = abc.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the direction ratios of the line perpendicular to the lines
`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane
Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)
Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`
The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.
The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.
Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.
Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`