Advertisements
Advertisements
Question
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
Solution
The equations of the lines are
`(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` = λ ...(say)...(1)
and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` = μ ...(say)...(2)
From (1), x = – 1 – 10λ, y = – 3 – λ , z = 4 + λ
∴ the coordinates of any point on the line (1) are (–1 – 10λ, – 3 – λ, 4 + λ)
From (2), x = – 10 – μ, y = – 1 – 3μ, z = 1 + 4μ
∴ the coordinates of any point on the line (2) are ( – 10 – μ, – 1 – 3μ, 1 + 4μ)
Lines (1) and (2) intersect, if (– 1 – 10λ, – 3 – λ, 4 + λ) = ( – 10 – μ, – 1 – 3μ, 1 + 4μ)
∴ the equation – 1 – 10λ = – 10 – μ, – 3 – λ = –1 – 3μ and 4 + λ = 1 + 4μ are simultaneously true.
Solving the first two equations, we get, λ = 1, and μ = 1.
These values of λ and μ satisfy the third equation also.
∴ the lines intersect.
Putting λ = 1 in (– 1 – 10λ, – 3 – λ, 4 + λ) or μ = 1 in (– 10 – μ, –1 – 3μ, 1 + 4μ), we get the point of intersection (–11, – 4, 5).
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.
Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.
Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).
If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
Find the coordinates of points on th line `(x - 1)/(1) = (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`
The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.
Equation of Z-axis is ______
The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______
The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.
The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.
What is the Cartesian product of A= {l, 2} and B= {a, b}?
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.