Advertisements
Advertisements
Question
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
Solution
Let `bar"a" = hat"i" + 2hat"j" + 3hat"k", bar"b"_1 = hat"i" + hat"j" + hat"k", bar"b"_2 = 2hat"i" - hat"j" + hat"k"`
The required line is perpendicular to `bar"b"_1 = hat"i" + hat"j" + hat"k"` and `bar"b"_2 = 2hat"i" - hat"j" + hat"k"`
∴ It is parallel to `bar"b" = bar"b"_1 xx bar"b"_2`
Now, `bar"b"_1 xx bar"b"_2 = |(hat"i", hat"j", hat"k"),(1, 1, 1),(2, -1, 1)|`
= `hat"i"(1 + 1) - hat"j"(1 - 2) + hat"k"(-1 - 2)`
= `2hat"i" + hat"j" - 3hat"k"`
The vector equation of a line passing through a point with position vector `bar"a"` and parallel to `bar"b"` is `bar"r" = bar"a" + lambdabar"b"`
∴ Vector equation of the required line is
`bar"r" = (hat"i" + 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" - 3hat"k")` .......(i)
Putting `bar"r" = xhat"i" + yhat"j" + zhat"k"` in (i), we get
`xhat"i" + yhat"j" + zhat"k" = (1 + 2lambda)hat"i" + 2(2 + lambda)hat"j" + (3 - 3lambda)hat"k"`
Equating the coefficients of `hat"i", hat"j"` and `hat"k"`, we get
x = 1 + 2λ, y = 2 + λ, z = 3 – 3λ
∴ λ = `(x - 1)/2`, λ = `(y - 2)/1`, λ = `(z - 3)/(-3)`
∴ `(x- 1)/2 = (y - 2)/1 = (z - 3)/(-3)`,
which is required cartesian equation.
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k" "and parallel to vector" 4hat"i" - hat"j" + 2hat"k"`.
Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k" "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`
A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.
Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
A plane makes non zero intercepts a, b, c on the coordinate axes. Show that the vector equation of the plane is `bar"r".(bchat"i" + cahat"j" + abhat"k")` = abc.
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the Cartesian equation of the line passing through A(1, 2, 3) and having direction ratios 2, 3, 7
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)
Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)
The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.
The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.
Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`