Advertisements
Advertisements
Question
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Solution
The vector equation of the line passing through A(`bar(a))` and parallel to the vector `bar"b"` is `bar"r" = bar"a" + lambdabar"b"`, where `lambda` is a scalar.
∴ the vector equation of the line passing through the point having position vector
`3hat"i" + 4hat"j" - 7hat"k"` and parallel to the vector `6hat"i" - hat"j" + hat"k"` is
`bar"r" = (3hat"i" + 4hat"j" -7hat"k") + lambda(6hat"i" - hat"j" + hat"k")`.
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k" "and parallel to vector" 4hat"i" - hat"j" + 2hat"k"`.
Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k" "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.
If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Solve the following :
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
Solve the following :
Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane
Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
Equation of Z-axis is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.
A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.
Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.