Advertisements
Advertisements
Question
Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k" "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`
Solution
Let A be point having position vector `bar"a" = -hat"i" - hat"j" + 2hat"k"`
The required line is parallel to the line
`bar"r" = (hat"i" + 2hat"j" + 3hat"k" + λ(3hat"i" + 2hat"j" + hat"k")`
∴ it is parallel to the vector
`bar"b" = 3hat"i" + 2hat"j" + hat"k"`
The vector equation of the line passing through `"A"(bara) "and parallel to" bar"b" "is" bar"r" = bar"a" + λbar"b"` where λ is a scalar.
∴ the required vector equation of the line is
`bar"r" = (-hat"i" - hat"j" + 2hat"k") + λ(3hat"i" + 2hat"j" + hat"k")`.
APPEARS IN
RELATED QUESTIONS
Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k" "and parallel to vector" 4hat"i" - hat"j" + 2hat"k"`.
Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.
If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)
Find the direction ratios of the line perpendicular to the lines
`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`
Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles
The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.
Equation of Z-axis is ______
The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______
A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.
What is the Cartesian product of A= {l, 2} and B= {a, b}?
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.