मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following : Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).

बेरीज

उत्तर

Case 1 : Let all the intercepts be 0.
Then the plane passes through the origin.
Then the vector equation of the plane is ax + by + cz = 0.      ...(1)
(1, 1, 1) lie on the plane.
∴ 1a + 1b + 1c = 0

∴ `hat"i"/|(1, 1),(1, 1)| = hat"j"/|(1, 1),(1, 1)| = hat"k"/|(1, 1),(1, 1)|`

∴ `hat"i"/(1) = hat"j"/(1) = hat"k"/(1)`

i.e. `hat"i"/(1) = hat"j"/(1) = hat"k"/(1)`

∴ `hat"i", hat"j", hat"k"` are proprtional to 1, 1, 1
∴ from (1), the required cartesian equation is x - y + z = 0

Case 2 : Let he plane make non zero intercept p on each axis.

then its equation is `hat"i"/p + hat"j"/p + hat"k"/p` = 1

i.e. `hat"i" + hat"j" + hat"k"` = p                   ...(2)
Since this plane pass through (1, 1, 1)
 1 + 1 + 1 = p 
∴ p = 3
∴ from (2), the required cartesian equation is `hat"i" + hat"j" + hat"k"` = 3
Hence, the cartesian equations of required planes are
`bar"r".(hat"i" + hat"j" + hat"k")` = 3

shaalaa.com
Vector and Cartesian Equations of a Line
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Line and Plane - Miscellaneous Exercise 6 B [पृष्ठ २२६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Line and Plane
Miscellaneous Exercise 6 B | Q 13 | पृष्ठ २२६

संबंधित प्रश्‍न

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k"  "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Find the vector equation of the line which passes through the origin and the point (5, –2, 3).


Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.


Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.


Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.


Find the coordinates of points on th line `(x - 1)/(1) =  (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).


The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.


Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.


Solve the following :

Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.


Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.


Find the direction ratios of the line perpendicular to the lines

`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`


Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`


Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


If line joining points A and B having position vectors `6overlinea - 4overlineb + 4overlinec` and `-4overlinec` respectively, and the line joining the points C and D having position vectors `-overlinea - 2overlineb - 3overlinec` and `overlinea + 2overlineb - 5overlinec` intersect, then their point of intersection is ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×