मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes

बेरीज

उत्तर

The plane makes intercepts 1, 1, 1 on the co-ordinate axes.

Let A(1, 0, 0), B(0, 1, 0), C(0, 0, 1) be the intersecting point of a plane with co-ordinate axes.

Vector equation of a plane passing through non-collinear points

`"A"(bar"a"),"B"(bar"b")` and `"C"(bar"c")` is `(bar"r" - bar"a")*(bar"b" - bar"a") xx (bar"c" - bar"a")` = 0

∴ `(bar"b" - bar"a") xx (bar"c" - bar"a") = |(hat"i", hat"j", hat"k"),(-1, 1, 0),(-1, 0, 1)|`

= `hat"i" + hat"j" + hat"k"`

∴ `(bar"r" - hat"i")*(hat"i" + hat"j" + hat"k")` = 0

∴ `bar"r"(hat"i" + ht"j" + hat"k") - hat"i"*(hat"i" + hat"j" + hat"k")` = 0

∴ `bar"r"*(hat"i" + hat"j" + hat"k") - 1` = 0    ......`[∵ hat"i"*hat"i" = 1, hat"i"*hat"j" = 0, hat"i"*hat"k" = 0]`

∴`bar"r"*(hat"i" + hat"j" + hat"k")` = 1   ......(i)

Putting `bar"r" = (xhat"i" + yhat"j" + zhat"k")` in (i), we get

`(xhat"i" + yhat"j" + zhat"k")*(hat"i" + hat"j" + hat"k")` = 1

∴ x + y + z = 1, which is the required Cartesian equation

shaalaa.com
Vector and Cartesian Equations of a Line
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.6: Line and Plane - Long Answers III

संबंधित प्रश्‍न

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k"  "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.


A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.


Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.


Solve the following :

Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.


Solve the following :

Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).


Find the Cartesian equation of the line passing through  A(1, 2, 3) and having direction ratios 2, 3, 7


Find the direction ratios of the line perpendicular to the lines

`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`


Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)


Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter


Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


If line joining points A and B having position vectors `6overlinea - 4overlineb + 4overlinec` and `-4overlinec` respectively, and the line joining the points C and D having position vectors `-overlinea - 2overlineb - 3overlinec` and `overlinea + 2overlineb - 5overlinec` intersect, then their point of intersection is ______


Equation of Z-axis is ______


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.


Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×