Advertisements
Advertisements
प्रश्न
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
उत्तर
The equation `bar"r" = bar"a" + lambdabar"b" + mubar"c"` represents a plane passing through a point having position vector `bar"a"` and parallel to vectors `bar"b" and bar"c"`.
Here,
`bar"a"=0hat"i"+0hat"j"+0hat"k"`
`bar"b" = hat"i" + hat"j" - hat"k"`,
`bar"c" = hat"i" + 2hat"j" + 3hat"k"`
∴ `bar"b" xx bar"c" = |(hat"i",hat"j" ,hat"k"),(1, 1, -1),(1, 2, 3)|`
= `(3 + 2)hat"i" - (3 - 1)hat"j" + (2 - 1)hat"k"`
= `5hat"i" - 4hat"j" + hat"k"`
Also,
`bar"a".(bar"b" xx bar"c")`
= `(0hat"i"+0hat"j"+0hat"k").(5hat"i"-4hat"j"+hat"k")`
= 0
The vector equation of the plane passing through A`(bara)` and parallel to `bar"b" and bar"c"` is
`bar"r".(bar"b" xx bar"c") = bar"a".(bar"b" xx bar"c")`
∴ the vector equation of the given plane is
`bar"r".(5hat"i" - 4hat"j" + hat"k")` = 0
If `bar"r" = xhat"i" + yhat"j" + zhat"k"`, then this equation becomes
`(xhat"i" + yhat"j" + zhat"k").(5hat"i" - 4hat"j" + hat"k")` = 0
∴ 5x – 4y + z = 0.
This is the cartesian equation of the required plane.
APPEARS IN
संबंधित प्रश्न
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
Find the coordinates of points on th line `(x - 1)/(1) = (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Solve the following :
Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.
Solve the following :
Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`
Find the Cartesian equation of the line passing through A(1, 2, 3) and having direction ratios 2, 3, 7
Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.
Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
If line joining points A and B having position vectors `6overlinea - 4overlineb + 4overlinec` and `-4overlinec` respectively, and the line joining the points C and D having position vectors `-overlinea - 2overlineb - 3overlinec` and `overlinea + 2overlineb - 5overlinec` intersect, then their point of intersection is ______
The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______
The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______
The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.
Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.
Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`