मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The direction ratios of the line which is perpendicular to the two lines andx-72=y+17-3=z-61andx+51=y+32=z-4-2 are ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.

पर्याय

  • 4, 5, 7

  • 4, –5, 7

  • 4, –5, –7

  • –4, 5, 8

MCQ
रिकाम्या जागा भरा

उत्तर

The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are 4, 5, 7.

Explanation:

`(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1)`

`(x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)`

The direction ratios of the given lines are proportional to 2, -3, 1 and 1, 2, -2.

The given lines are parallel to the vectors →

`vecb_1 = 2hati - 3hatj + hatk  and  vecb_2 = hati + 2hatj - 2 hatk`

The vector perpendicular to the given two lines is →

`vecb = vecb_1 xx vecb_2`

= `|(hati      hatj      hatk), (2 -3   1), (1   2 -2)|`

= `4hati + 5hatj + 7hatk`

Hence, the direction ratios of the line perpendicular to the given two lines are proportional to 4, 5, 7.

shaalaa.com
Vector and Cartesian Equations of a Line
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Line and Plane - Miscellaneous Exercise 6 B [पृष्ठ २२३]

संबंधित प्रश्‍न

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"  "and perpendicular to vectors"  hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.


Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k"  "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.


Find the vector equation of the line which passes through the origin and the point (5, –2, 3).


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Solve the following :

Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.


Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).


Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.


Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.


Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)


Find the direction ratios of the line perpendicular to the lines

`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`


Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter


Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)


The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.


If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.


Equation of Z-axis is ______


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.


The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.


Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×