मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)

बेरीज

उत्तर

If A(x1, y1, z1), B(x2, y2, z2) and C(x3, y3, z3) be three non-collinear points and P(x, y, z) be any point on a plane, then the Cartesian equation of the plane passing through A, B, C is

`|(x - x_1, y - y_1, z - z_1),(x_2 - x_1, y_2 - y_1, z_2 - z_1),(x_3 - x_1, y_3 - y_1, z_3 - z_1)|` = 0

∴ The Cartesian equation of the plane passing through A(1, 1, 2), B(0, 2, 3) and C(4, 5, 6) is

`|(x - 1, y - 1, z - 2),(0 - 1, 2 - 1, 3 - 2),(4 - 1, 5 - 1, 6 - 2)|` = 0

∴ `|(x - 1, y - 1, z - 2),(-1, 1, 1),(3, 4, 4)|` = 0

∴ (x – 1)(4 – 4) – (y – 1)(–4 – 3) + (z – 2)(–4 – 3) = 0

∴ 7y – 7 – 7z + 14 = 0

∴ y – z + 1 = 0

shaalaa.com
Vector and Cartesian Equations of a Line
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.6: Line and Plane - Short Answers II

संबंधित प्रश्‍न

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios  –3, 4, 2.


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.


Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Find the vector equation of the line which passes through the origin and the point (5, –2, 3).


Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.


Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Solve the following :

Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).


Solve the following :

Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.


Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).


Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.


Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`


Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`


Find the Cartesian equation of the line passing through  A(1, 2, 3) and having direction ratios 2, 3, 7


Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`


Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×