हिंदी

A line passes through (3, –1, 2) and is perpendicular to lines rijkijkandrjkjkr¯=(i^+j^-k^)+λ(2i^-2j^+k^)andr¯=(2^+j^-3k^)+μ(^-2j^+2k^). Find its equation. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.

योग

उत्तर

The line `bar"r" = (hat"i" + hat"j" - hat"k") + λ(2hat"i" - 2hat"j" + hat"k")` is parallel to the vector `bar"b" = 2hat"i" - 2hat"j" + hat"k"` and the line `bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")` is parallel to the vector. `bar"c" = hat"i" - 2hat"j" + 2hat"k"`.

The vector perpendicular to the vectors `bar"b" and bar"c"` is  given by

`bar"b" xx bar"c" = |(hat"i"                ), (2  -2    1),(1 -2      2)|`

`= hat"i"(-4 + 2) - hat"j"(4 - 1) + hat"k"(-4 + 2)`
`= -2hat"i" - 3hat"j" - 2hat"k"`
Since the required line is perpendicular to the given lines,
it is perpendicular to both `bar"b" and bar"c"`.
∴ It is parallel to `bar"b" xx bar"c"`
The equation of the line passing through `"A"(bara)` and parallel to `bar"b" and bar"c"` is
`bar"r" = bar"a" + λ(bar"b" xx bar"c")`, where λ is a scalar.
Here, `bar"a" = 3hat"i" -  hat"j" + 2hat"k"`
∴ the equation of the required line is
`bar"r" = (3hat"i" - hat"j" + 2hat"k") + λ(-2hat"i" - 3hat"j" - 2hat"k")`
or
`bar"r" = (3hat"i" - hat"j" + 2hat"k") + mu(2hat"i" + 3hat"j" + 2hat"k")`, where μ = `-λ`.

shaalaa.com
Vector and Cartesian Equations of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Line and Plane - Exercise 6.1 [पृष्ठ २००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Line and Plane
Exercise 6.1 | Q 10 | पृष्ठ २००

संबंधित प्रश्न

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"  "and perpendicular to vectors"  hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.


Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


Find the vector equation of the line which passes through the origin and the point (5, –2, 3).


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


Find the coordinates of points on th line `(x - 1)/(1) =  (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).


The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).


Solve the following :

Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.


Solve the following :

Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.


Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.


Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)


Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)


Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`


Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i"  - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`


Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes


The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×