हिंदी

Solve the following : Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.

योग

उत्तर

Given lines are x = y, z = 0 and x + y = 0, z = 0.

It is clear that (0, 0, 0) satisfies both the equations.

 the lines intersect at O whose position vector is `bar"0"`

Since z = 0 fr both the lines, both the lines ie in XY-plane.

Hence, we have to find equation oXY-ane.

Z-axis is perpendicular to XY-plane.

∴ normal to XY plane is `hat"k"`.

`"O"(bar"0")` lies on the plane.

By using `bar"r".bar"n" = bar"a".bar"n"`, vecttor equation of the required plane is `bar"r".hat"k" = bar"0".bar"k"`

i.e. `bar"r".hat"k"` = 0.

Hence, the given lines intersect each other and the vector equation of the plane determine by them is `bar"r".hat"k"` = 0.

shaalaa.com
Vector and Cartesian Equations of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Line and Plane - Miscellaneous Exercise 6 B [पृष्ठ २२६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Line and Plane
Miscellaneous Exercise 6 B | Q 21 | पृष्ठ २२६

संबंधित प्रश्न

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios  –3, 4, 2.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.


Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.


Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.


If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.


The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Find the direction ratios of the line perpendicular to the lines

`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`


Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form


Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`


Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter


Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2


Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i"  - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`


The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.


The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


Equation of Z-axis is ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.


Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×