हिंदी

Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector ijk2i^+2j^-3k^. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.

योग

उत्तर

The vector equation of the line passing through A(`bar(a))` and parallel to the vector `bar"b"` is `bar"r" = bar"a"  + lambdabar"b"`, where `lambda` is a scalar.
∴ the vector equation of the line passing through the point having position vector `3hat"i" + 2hat"j" + hat"k"` and parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"` is `bar"r" = (3hat"i" + 2hat"j" + hat"k") + lambda(2hat"i" + 2hat"j" - 3hat"k")`.

shaalaa.com
Vector and Cartesian Equations of a Line
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Line and Plane - Miscellaneous Exercise 6 A [पृष्ठ २०७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Line and Plane
Miscellaneous Exercise 6 A | Q 2 | पृष्ठ २०७

संबंधित प्रश्न

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k"  "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.


If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Solve the following :

Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.


Solve the following :

Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.


Solve the following :

The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Solve the following :

Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).


Solve the following :

Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.


Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`


Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form


Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i"  - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


Equation of Z-axis is ______


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.


Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×