Advertisements
Advertisements
Question
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solution
`("x" + 2"y"^3) "dy"/"dx" = "y"`
∴ `("x" + "2y"^3)/"y" = 1/(("dy"/"dx"))`
∴ `"x"/"y" + 2"y"^2 = "dx"/"dy"`
∴ `"dy"/"dx" - 1/"y" * "x" = 2"y"^2` .....(1)
This is the linear differential equation of the form
`"dx"/"dy" + "P"*"x" = "Q"`, where P = `- 1/"y"` and Q = 2y2
∴ I.F. = `"e"^(int "Pdy") = "e"^(int - 1/"y""dy")`
∴ = `"e"^(- log "y") = "e"^(log (1/"y")) = 1/"y"`
∴ the solution of (1) is given by
∴ `"x" * ("I.F.") = int "Q" ("I.F.") "dy" + "c"`
∴ `"x"(1/"y") = int 2"y"^2 xx 1/"y" "dy" + "c"`
∴ `"x"/"y" = 2 int "y" "dx" + "c"`
∴ `"x"/"y" = 2 * "y"^2/2 + "c"`
∴ x = y(c + y2)
This is the general solution.
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
(x + tan y) dy = sin 2y dx
dx + xdy = e−y sec2 y dy
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
Which of the following is a second order differential equation?
Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.