Advertisements
Advertisements
Question
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
Solution
Let the co-ordinates be x and y, then
`x + y = dy/dx + 5`
⇒ `dy/dx - y = x - 5` ....(1)
Which is a linear differential equation of the type `dy/dx + Py = Q`
Here P = -1 and Q = x - 5
∴ `I.F. = e^(int Pdx) = e^(int -1 dx) = e^-x`
∴ the solution is `y. (I.F.) = int Q. (I.F.) dx + C`
`y.e^-x = int (x - 5) e^-x dx + C`
`= int xe^-x dx - 5 int e^-x dx + C`
`= x (e^-x/-1) - int (1) (e^-x)/-1 dx - 5 (e^-x)/-1 + C` ....[Intergrating by parts]
⇒ `ye^-x = -xe^-x + e^-x/-1 + 5e^-x + C`
`= -xe^-x + 4e^-x + C`
⇒ `y = -x + 4 + Ce^x` ....(2)
Since the curve passes through (0, 2), we get
2 = -0 + 4 + C
⇒ C = -2
Putting C = -2 in (2), we get
y = -x + 4 - 2ex
⇒ y = 4 - x - 2ex
Which is the required equation of the curve.
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`"dy"/"dx" + "y"/"x" = "x"^3 - 3`
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
`(x + 2y^3 ) dy/dx = y`
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.