हिंदी

Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

योग

उत्तर

Let the co-ordinates be x and y, then

`x + y = dy/dx + 5`

⇒ `dy/dx - y = x - 5`                 ....(1)

Which is a linear differential equation of the type `dy/dx + Py = Q`

Here P = -1 and Q = x - 5

∴ `I.F. = e^(int Pdx) = e^(int -1  dx) = e^-x`

∴ the solution is `y. (I.F.) = int Q. (I.F.)  dx + C`

`y.e^-x = int (x - 5) e^-x  dx + C`

`= int xe^-x  dx - 5 int e^-x  dx + C`

`= x (e^-x/-1) - int (1)  (e^-x)/-1  dx - 5  (e^-x)/-1 + C`      ....[Intergrating by parts]

⇒ `ye^-x = -xe^-x + e^-x/-1 + 5e^-x + C`

`= -xe^-x + 4e^-x + C`

⇒ `y = -x + 4 + Ce^x`              ....(2)

Since the curve passes through (0, 2), we get

2 = -0 + 4 + C

⇒ C = -2

Putting C = -2 in (2), we get

y = -x + 4 - 2ex

⇒ y = 4 - x - 2ex

Which is the required equation of the curve.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.6 [पृष्ठ ४१४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.6 | Q 17 | पृष्ठ ४१४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

x dy = (2y + 2x4 + x2) dx


\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

y dx + (x - y2) dy = 0


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The equation x2 + yx2 + x + y = 0 represents


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×