Advertisements
Advertisements
प्रश्न
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
उत्तर
Given differential equation
`x dy/dx + y - x + xy cot x = 0`
⇒ `x dy/dx + y (1 + x cot x) = x`
or `dy/dx + (1/x + cot x) y = 1` ...(i)
Comparing with `dy/dx + Py = Q`
`P = 1/x + cot x` and Q = 1
∴ `I.F. = e^(int P dx) = e^(int(1/x + cot x)dx)`
`= e^(log x) + log sin x`
`=> e^(log (x sin x)) = x sin x`
Hence the required solution
∴ `y × I.F. = int I.F. xx Q dx + C`
`=> y xx x sin x = int 1 * x sin x dx + C`
`=> xy sin x = - x cos x + int 1 cos x dx + C`
`=> xy sin x = - x cos x + sin x + C`
⇒ y = `(- x cos x)/(x sin x) + (sin x)/(x sin x) + C/(x sin x)`
⇒ `y = 1/x - cot x + C/ (x sin x)`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
Find the general solution of the differential equation `dy/dx - y = sin x`
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
(x + tan y) dy = sin 2y dx
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] = y tan x − 2 sin x
Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
`(x + 2y^3 ) dy/dx = y`
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.