Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
उत्तर
`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`
∴ `"dy"/"dx" + 1/(1 + "x"^2) * "y" = "e"^(tan^-1 "x")/(1 + "x"^2)` ....(1)
This is the linear differential equation of the form
`"dy"/"dx" + "P" * "y" = "Q",` where P = `1/(1 + "x"^2)` and Q = `"e"^(tan^-1 "x")/(1 + "x"^2)`
∴ I.F. = `"e"^(int "P dx") = "e"^(int 1/"1 + x"^2"dx")`
`= "e"^(tan^-1 "x")`
∴ the solution of (1) is given by
`"y" * ("I.F.") = int "Q" * ("I.F.") "dx" + "c"`
∴ `"y" * "e"^(tan^-1"x") = int "e"^(tan^-1 "x")/(1 + "x"^2) * "e"^(tan^-1"x") "dx" + "c"`
∴ `"y" * "e"^(tan^-1"x") = int ("e"^(tan^-1 "x")) * ("e"^(tan^-1"x")/(1 + "x"^2)) "dx" + "c"`
Put `"e"^(tan^-1"x") = "t"`
∴ `"e"^(tan^-1"x")/(1 + "x"^2) "dx" = "dt"`
∴ `"y" * "e"^(tan^-1"x") = int "t dt" + "c"`
∴ `"y" * "e"^(tan^-1"x") = "t"^2/2 + "c"`
∴ `"y" * "e"^(tan^-1"x") = 1/2 ("e"^(tan^-1"x"))^2 + "c"`
∴ y = `1/2 "e"^(tan^-1"x") + "ce"^(- tan^-1 "x")`
This is the general solution.
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
(x + tan y) dy = sin 2y dx
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`
Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
`(x + 2y^3 ) dy/dx = y`
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
Integrating factor of `dy/dx + y = x^2 + 5` is ______
Which of the following is a second order differential equation?
The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`