English

State whether the following statement is true or false. The integrating factor of the differential equation dydx+yx = x3 is – x. - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following statement is true or false.

The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

`(dy)/(dx) + y/x` = x3 

∴ `(dy)/(dx) + (x^-1). y = x^3`

Comparing with `(dy)/(dx) + Py = Q`, we get

P = x–1, Q = x3

 Now, I.F. = `e^(intpdx)`

= `e^(intx^-1 dx)`

= `e^(logx)`

= x.

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (March) Set 1

APPEARS IN

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


\[\frac{dy}{dx}\] + y cos x = sin x cos x


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


`(x + 2y^3 ) dy/dx = y`


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×