Advertisements
Advertisements
Question
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solution
We have,
\[\frac{dy}{dx} + y \cos x = \sin x \cos x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \cos x\]
\[Q = \sin x \cos x\]
\[ \therefore I.F. = e^{\int P\ dx} \]
\[ = e^{\int\cos x\ dx} \]
\[ = e^{\sin x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^{\sin x} ,\text{ we get }\]
\[ e^{\sin x} \left( \frac{dy}{dx} + y \cos x \right) = e^{\sin x} \sin x \cos x\]
\[ \Rightarrow e^{\sin x} \frac{dy}{dx} + e^{\sin x} y \cos x = e^{\sin x} \sin x\cos x \]
Integrating both sides with respect to x, we get
\[y\ e^{\sin x} = \int e^{\sin x} \sin x\cos \text{ x } dx + C\]
\[ \Rightarrow y e^{\sin x} = I + C . . . . . \left( 2 \right)\]
where
\[I = \int e^{\sin x} \sin x \cos \text{ x } dx\]
\[\text{Putting }t = \sin x,\text{ we get }\]
\[dt = \cos \text{ x }dx\]
\[ = t\int e^t dt - \int\left[ \frac{d}{dt}\left( t \right)\int e^t dt \right]dt\]
\[ = t e^t - e^t \]
\[ = e^t \left( t - 1 \right)\]
\[ = e^{\sin x} \left( \sin x - 1 \right)\]
\[\text{Putting the value of I in }\left( 2 \right), \text{we get }\]
\[\text{ y } e^{\sin x} = e^{\sin x} \left( \sin x - 1 \right) + C\]
\[ \Rightarrow y = \sin x - 1 + C e^{- \sin x} \]
\[\text{Hence, }y = \sin x - 1 + C e^{- \sin x}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`dy/dx + 2y = sin x`
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`dy/dx + y/x = x^2`
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx - 3ycotx = sin 2x; y = 2` when `x = pi/2`
The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
Solve the differential equation `x dy/dx + y = x cos x + sin x`, given that y = 1 when `x = pi/2`
\[\frac{dy}{dx}\] = y tan x − 2 sin x
Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the following differential equation:
y dx + (x - y2) dy = 0
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
`(x + 2y^3 ) dy/dx = y`
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
Integrating factor of `dy/dx + y = x^2 + 5` is ______
The equation x2 + yx2 + x + y = 0 represents
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.