English

X D Y D X + 2 Y = X Cos X - Mathematics

Advertisements
Advertisements

Question

\[x\frac{dy}{dx} + 2y = x \cos x\]
Sum

Solution

We have,
\[x\frac{dy}{dx} + 2y = x \cos x\]
\[ \Rightarrow \frac{dy}{dx} + \frac{2}{x}y = \cos x\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]
\[P = \frac{2}{x}\]
\[Q = \cos x\]
Now,
\[I.F. = e^{\int\frac{2}{x}dx} = e^{2\log \left| x \right|} = x^2 \]
Solution is given by, 
\[y \times I . F . = \int\cos x \times I . F . dx + C\]
\[ \Rightarrow y x^2 = \int x^2 \cos x \text{ dx } + C\]
\[ \Rightarrow x^2 y = I + C . . . . . . . . . \left( 1 \right)\]
Where,

\[ \Rightarrow I = x^2 \int\cos x dx - \int\left[ \frac{d}{dx}\left( x^2 \right)\int\cos x \text{ dx } \right]dx\]
\[ \Rightarrow I = x^2 \sin x - 2\int x \sin x \text{ dx }\]

\[ \Rightarrow I = x^2 \sin x - 2x\int\sin x \text{ dx } + 2\int\left[ \frac{d}{dx}\left( x \right)\int\sin x dx \right]dx\]
\[ \Rightarrow I = x^2 \sin x + 2x \cos x - 2\int\cos \text{ x } dx\]
\[ \Rightarrow I = x^2 \sin x + 2x \cos x - 2\sin x\]
\[ \Rightarrow I = x^2 \sin x + 2x \cos x - 2\sin x\]
\[\text{ Therefore }\left( 1 \right)\text{ becomes }\]
\[ \therefore x^2 y = x^2 \sin x + 2x \cos x - 2\sin x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 106]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 32 | Page 106

RELATED QUESTIONS

For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

x dy = (2y + 2x4 + x2) dx


\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


(x + tan y) dy = sin 2y dx


\[\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.


Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` . 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×