Advertisements
Advertisements
Question
Solution
We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{1 + x^2} = \frac{e^{tan^{- 1} x}}{1 + x^2} . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \frac{1}{1 + x^2}\]
\[Q = \frac{e^{tan^{- 1} x}}{1 + x^2}\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\frac{1}{1 + x^2} dx} \]
\[ = e^{tan^{- 1} x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by } e^{tan^{- 1} x} ,\text{ we get }\]
\[ e^{tan^{- 1} x} \left( \frac{dy}{dx} + \frac{y}{1 + x^2} \right) = e^{tan^{- 1} x} \frac{e^{tan^{- 1} x}}{1 + x^2}\]
\[ \Rightarrow e^{tan^{- 1} x} \frac{dy}{dx} + \frac{y\ e^{tan^{- 1} x}}{1 + x^2} = e^{tan^{- 1} x} \frac{e^{tan^{- 1} x}}{1 + x^2}\]
Integrating both sides with respect to x, we get
\[y\ e^{tan^{- 1} x} = \int\frac{e^{2 \tan^{- 1} x}}{1 + x^2} dx + C\]
\[ \Rightarrow y\ e^{tan^{- 1} x} = I + C . . . . ...... \left( 2 \right)\]
Here,
\[I = \int\frac{e^{2 \tan^{- 1} x}}{1 + x^2} dx\]
\[\text{ Putting }\tan^{- 1} x = t,\text{ we get }\]
\[\frac{1}{1 + x^2}dx = dt\]
\[ \therefore I = \int e^{2t} dt\]
\[ = \frac{e^{2t}}{2}\]
\[ = \frac{e^{2 \tan^{- 1} x}}{2}\]
\[\text{Putting the value of I in }\left( 2 \right),\text{ we get }\]
\[y\ e^{tan^{- 1} x} = \frac{e^{2 \tan^{- 1} x}}{2} + C\]
\[ \Rightarrow 2y\ e^{tan^{- 1} x} = e^{2 \tan^{- 1} x} + 2C\]
\[ \Rightarrow 2y\ e^{tan^{- 1} x} = e^{2 \tan^{- 1} x} + k, .............\left(\text{where } k = 2C \right)\]
\[\text{Hence, }2y\ e^{tan^{- 1} x} = e^{2 \tan^{- 1} x} + k\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
For the differential equation, find the general solution:
`(x + 3y^2) dy/dx = y(y > 0)`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
The integrating factor of the differential equation.
`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.
The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?
(x + tan y) dy = sin 2y dx
\[\frac{dy}{dx}\] = y tan x − 2 sin x
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.
The integrating factor of `(dy)/(dx) + y` = e–x is ______.
Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.
Solution: The equation `("d"y)/("d"x) - y` = 2x
is of the form `("d"y)/("d"x) + "P"y` = Q
where P = `square` and Q = `square`
∴ I.F. = `"e"^(int-"d"x)` = e–x
∴ the solution of the linear differential equation is
ye–x = `int 2x*"e"^-x "d"x + "c"`
∴ ye–x = `2int x*"e"^-x "d"x + "c"`
= `2{x int"e"^-x "d"x - int square "d"x* "d"/("d"x) square"d"x} + "c"`
= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`
∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`
∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`
∴ `y + square + square` = cex is the required general solution of the given differential equation
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
Which of the following is a second order differential equation?
Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.
The equation x2 + yx2 + x + y = 0 represents
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.
Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`
The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.