मराठी

( 1 + X 2 ) D Y D X + Y = E T a N − 1 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]
बेरीज

उत्तर

We have, 
\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{1 + x^2} = \frac{e^{tan^{- 1} x}}{1 + x^2} . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \frac{1}{1 + x^2}\]
\[Q = \frac{e^{tan^{- 1} x}}{1 + x^2}\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\frac{1}{1 + x^2} dx} \]
\[ = e^{tan^{- 1} x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by } e^{tan^{- 1} x} ,\text{ we get }\]
\[ e^{tan^{- 1} x} \left( \frac{dy}{dx} + \frac{y}{1 + x^2} \right) = e^{tan^{- 1} x} \frac{e^{tan^{- 1} x}}{1 + x^2}\]
\[ \Rightarrow e^{tan^{- 1} x} \frac{dy}{dx} + \frac{y\ e^{tan^{- 1} x}}{1 + x^2} = e^{tan^{- 1} x} \frac{e^{tan^{- 1} x}}{1 + x^2}\]
Integrating both sides with respect to x, we get
\[y\ e^{tan^{- 1} x} = \int\frac{e^{2 \tan^{- 1} x}}{1 + x^2} dx + C\]
\[ \Rightarrow y\ e^{tan^{- 1} x} = I + C . . . . ...... \left( 2 \right)\]
Here,
\[I = \int\frac{e^{2 \tan^{- 1} x}}{1 + x^2} dx\]
\[\text{ Putting }\tan^{- 1} x = t,\text{ we get }\]
\[\frac{1}{1 + x^2}dx = dt\]
\[ \therefore I = \int e^{2t} dt\]
\[ = \frac{e^{2t}}{2}\]
\[ = \frac{e^{2 \tan^{- 1} x}}{2}\]
\[\text{Putting the value of I in }\left( 2 \right),\text{ we get }\]
\[y\ e^{tan^{- 1} x} = \frac{e^{2 \tan^{- 1} x}}{2} + C\]
\[ \Rightarrow 2y\ e^{tan^{- 1} x} = e^{2 \tan^{- 1} x} + 2C\]
\[ \Rightarrow 2y\ e^{tan^{- 1} x} = e^{2 \tan^{- 1} x} + k, .............\left(\text{where } k = 2C \right)\]
\[\text{Hence, }2y\ e^{tan^{- 1} x} = e^{2 \tan^{- 1} x} + k\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 20 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


dx + xdy = e−y sec2 y dy


\[\frac{dy}{dx}\] + y cos x = sin x cos x


\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×