मराठी

Y 2 D X D Y + X − 1 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 

बेरीज

उत्तर

We have, 
\[ y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]
\[ \Rightarrow y^2 \frac{dx}{dy} + x = \frac{1}{y} \]
\[ \Rightarrow \frac{dx}{dy} + \frac{1}{y^2}x = \frac{1}{y^3} . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
where
\[P = \frac{1}{y^2}\]
\[Q = \frac{1}{y^3}\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{\int\frac{1}{y^2}dy} \]
\[ = e^\frac{- 1}{y} \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }e^\frac{- 1}{y} ,\text{ we get }\]
\[e^\frac{- 1}{y} \left( \frac{dx}{dy} + x\frac{1}{y^2} \right) = e^\frac{- 1}{y} \frac{1}{y^3}\]
\[ \Rightarrow e^\frac{- 1}{y} \frac{dx}{dy} + x\frac{1}{y^2} e^\frac{- 1}{y} = e^\frac{- 1}{y} \frac{1}{y^3}\]
Integrating both sides with respect to y, we get
\[x\ e^\frac{- 1}{y} = \int e^\frac{- 1}{y} \frac{1}{y^3}dy + C\]
\[ \Rightarrow x\ e^\frac{- 1}{y} = I + C . . . . . . . . \left( 2 \right)\]
where
\[I = \int e^\frac{- 1}{y} \frac{1}{y^3}dy\]
\[\text{Putting }t = \frac{1}{y}, \text{ we get }\]
\[dt = - \frac{1}{y^2}dy\]

\[ = - t\int e^{- t} dt + \int\left[ \frac{d}{dt}\left( t \right)\int e^{- t} dt \right]dt\]
\[ = t e^{- t} + e^{- t} \]
\[ = \left( t + 1 \right) e^{- t} \]
\[ = \left( \frac{1}{y} + 1 \right) e^{- \frac{1}{y}} \]
\[\text{Putting the value of I in }\left( 2 \right),\text{ we get }\]
\[x\ e^\frac{- 1}{y} = \left( \frac{1}{y} + 1 \right) e^{- \frac{1}{y}} + C \]
\[ \Rightarrow x = \left( \frac{y + 1}{y} \right) + C e^\frac{1}{y} \]
\[\text{Hence, }x = \left( \frac{y + 1}{y} \right) + C e^\frac{1}{y} \text{ is the required solution.} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 23 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


The Integrating Factor of the differential equation `dy/dx - y = 2x^2` is ______.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


x dy = (2y + 2x4 + x2) dx


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

y dx + (x - y2) dy = 0


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


`(x + 2y^3 ) dy/dx = y`


The equation x2 + yx2 + x + y = 0 represents


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Find the general solution of the differential equation:

`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


Solve:

`xsinx dy/dx + (xcosx + sinx)y` = sin x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×