Advertisements
Advertisements
प्रश्न
For the differential equation, find the general solution:
(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
उत्तर
The given equation is
(1 + x2) dy + 2xy dx
= cot x dx
⇒ `dy/dx + (2x)/(1 + x^2) y = (cot x)/ (1 + x^2)` ...(1)
Which is a liner equation of the type
Here `P = (2x)/(1 + x^2)`
and `Q = (cot x)/(1 + x^2)`
Now `int P dx = int (2x)/(1 + x^2) dx`
`⇒ log |1 + x^2| = log (1 + x^2)`
[∵ x2 ≥ 0 ⇒ 1 + x2 > 0 ⇒ |1 + x2| = 1 + x2]
∴ `I.F. = e^(int Pdx) = e^(log (1 + x^2)) = 1 + x^2`
∴ The solution is `y.(I.F.) = int Q. (I.F.) dx + C`
⇒ `y (1 + x^2) = int cot x dx + C`
⇒ y (1 + x2) = log |sin x| + C
⇒ y = (1 + x2)-1 log |sin x| + C (1 + x2)-1
APPEARS IN
संबंधित प्रश्न
Find the the differential equation for all the straight lines, which are at a unit distance from the origin.
For the differential equation, find the general solution:
`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`
For the differential equation, find the general solution:
`x dy/dx + y - x + xy cot x = 0(x != 0)`
For the differential equation, find the general solution:
`(x + y) dy/dx = 1`
Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.
Find the general solution of the differential equation `dy/dx - y = sin x`
x dy = (2y + 2x4 + x2) dx
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] + y cos x = sin x cos x
Solve the following differential equation:- \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\]
Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`"dy"/"dx" + "y"/"x" = "x"^3 - 3`
Solve the following differential equation:
`("x" + 2"y"^3) "dy"/"dx" = "y"`
Solve the following differential equation:
`("x + y") "dy"/"dx" = 1`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
y dx + (x - y2) dy = 0
Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.
If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.
The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.
The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.
The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______
Integrating factor of the differential equation `(1 - x^2) ("d"y)/("d"x) - xy` = 1 is ______.
The equation x2 + yx2 + x + y = 0 represents
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
Let y = y(x) be a solution curve of the differential equation (y + 1)tan2xdx + tanxdy + ydx = 0, `x∈(0, π/2)`. If `lim_(x→0^+)` xy(x) = 1, then the value of `y(π/2)` is ______.
Let the solution curve y = y(x) of the differential equation (4 + x2) dy – 2x (x2 + 3y + 4) dx = 0 pass through the origin. Then y (2) is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.