मराठी

Dx + Xdy = E−Y Sec2 Y Dy - Mathematics

Advertisements
Advertisements

प्रश्न

dx + xdy = e−y sec2 y dy

बेरीज

उत्तर

We have,
\[dx + \text{ x }dy = e^{- y} \sec^2 \text{ y  }dy\]
\[ \Rightarrow dx = e^{- y} \sec^2 \text{ y } dy - \text{ x } dy\]
\[ \Rightarrow \frac{dx}{dy} = e^{- y} \sec^2 y - x\]
\[ \Rightarrow \frac{dx}{dy} + x = e^{- y} \sec^2 y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dx}{dy} + Px = Q\]
where
\[P = 1\]
\[Q = e^{- y} \sec^2 y\]
\[ \therefore I.F. = e^{\int P\ dy} \]
\[ = e^{\int dy} \]
\[ = e^y \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }e^y ,\text{ we get }\]
\[ e^y \left( \frac{dx}{dy} + x \right) = e^y e^{- y} \sec^2 y\]
\[ \Rightarrow e^y \frac{dx}{dy} + x e^y = \sec^2 y\]
Integrating both sides with respect to y, we get
\[x e^y = \int \sec^2 y\text{ dy } + C\]
\[ \Rightarrow x e^y = \tan y + C\]
\[\text{ Hence, } \text{ x }e^y = \tan y + C\text{ is the required solution.} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 26 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

y dx + (x – y2) dy = 0


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


Find the general solution of the differential equation `dy/dx - y = sin x`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

x dy = (2y + 2x4 + x2) dx


\[\frac{dy}{dx}\] = y tan x − 2 sin x


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} - y = x e^x\]

\[\frac{dy}{dx} + 2y = x e^{4x}\]

Solve the differential equation \[\left( x + 2 y^2 \right)\frac{dy}{dx} = y\], given that when x = 2, y = 1.


Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Find the particular solution of the differential equation \[\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0\] given that x = 0 when \[y = \frac{\pi}{2}\].


Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation:

`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


Integrating factor of `dy/dx + y = x^2 + 5` is ______ 


Which of the following is a second order differential equation?


The equation x2 + yx2 + x + y = 0 represents


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If sin x is the integrating factor (IF) of the linear differential equation `dy/dx + Py` = Q then P is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×