मराठी

Find the General Solution of the Differential Equation D Y D X − Y = Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]

बेरीज

उत्तर

We have,
\[\frac{dy}{dx} - y = \cos x . . . . . . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = - 1\text{ and }Q = \cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int dx} \]
\[ = e^{- x} \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^{- x} ,\text{ we get }\]
\[ e^{- x} \left( \frac{dy}{dx} - y \right) = e^{- x} \cos x \]
\[ \Rightarrow e^{- x} \frac{dy}{dx} - e^{- x} y = e^{- x} \cos x\]
Integrating both sides with respect to x, we get
\[y e^{- x} = \int e^{- x} \cos x dx + C\]
\[ \Rightarrow y e^{- x} = I + C . . . . . . . . \left( 2 \right)\]
Here, 
\[I = \int e^{- x} \cos x dx . . . . . . . . . . \left( 3 \right)\]
\[ \Rightarrow I = e^{- x} \sin x - \int\left( - e^{- x} \sin x \right) dx\]
\[ \Rightarrow I = e^{- x} \sin x + \int e^{- x} \sin x dx\]
\[ \Rightarrow I = e^{- x} \sin x - e^{- x} \cos x - \int\left[ \left( - e^{- x} \right) \times \left( - \cos x \right) \right] dx\]
\[ \Rightarrow I = e^{- x} \sin x - e^{- x} \cos x - \int e^{- x} \cos x dx\]
\[ \Rightarrow I = e^{- x} \sin x - e^{- x} \cos x - I .............\left[\text{From (3)} \right]\]
\[ \Rightarrow 2I = e^{- x} \left( \sin x - \cos x \right)\]
\[ \Rightarrow I = \frac{e^{- x}}{2}\left( \sin x - \cos x \right) . . . . . . . . . . . \left( 4 \right)\]
\[\text{ From }\left( 2 \right)\text{ and }\left( 4 \right)\text{ we get }\]
\[ \Rightarrow y e^{- x} = \frac{e^{- x}}{2}\left( \sin x - \cos x \right) + C\]
\[ \Rightarrow y = \frac{1}{2}\left( \sin x - \cos x \right) + C e^x \]
\[\text{ Hence, }y = \frac{1}{2}\left( \sin x - \cos x \right) + C e^x \text{ is the required solution.} \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 39 | पृष्ठ १०७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`cos^2 x dy/dx + y = tan x(0 <= x < pi/2)`


For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`


\[\frac{dy}{dx} + y \tan x = x^2 \cos^2 x\]

\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


(x + tan y) dy = sin 2y dx


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`"dy"/"dx" + "y" * sec "x" = tan "x"`


Solve the following differential equation:

`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`


Find the equation of the curve which passes through the origin and has the slope x + 3y - 1 at any point (x, y) on it.


Form the differential equation of all circles which pass through the origin and whose centers lie on X-axis.


`(x + 2y^3 ) dy/dx = y`


The slope of the tangent to the curves x = 4t3 + 5, y = t2 - 3 at t = 1 is ______


Which of the following is a second order differential equation?


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = f(x) be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If f(x) satisfies xf'(x) = x2 + f(x) – 2, then the area bounded by f(x) with x-axis between ordinates x = 0 and x = 3 is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×