Advertisements
Advertisements
प्रश्न
For the differential equation, find the general solution:
`x log x dy/dx + y= 2/x log x`
उत्तर
The given equation
`x log x dy/dx + y = 2/x log x`
or `dy/dx + y/(x log x) = 1/x^2` ....(i)
Comparing with `dy/dx + Py = Q`,
`P = 1/(x log x)` and `Q = 2/x^2`
∴ `I.F. = e^(intP dx) = e^(int 1/(x log x)dx)`
`= e^(log(log x)) = log x`
Hence the required solution
∴ `y × I.F. = int I.F. xx Q dx + C`
`=> y log x = 2 int 1/x^2 (log x) dx + C`
`=> y log x = 2 [log x (- 1/x) - int 1/x ((- 1)/x) dx] + C`
`=> y log x = (- 2)/x log x + 2 int 1/x^2 dx + C`
`=> y log x = (- 2)/x log x - 2/x + C`
⇒ `y = log x = (- 2)/x (1 + log |x|) + C`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx + 3y = e^(-2x)`
For the differential equation, find the general solution:
`x dy/dx + 2y= x^2 log x`
For the differential equation given, find a particular solution satisfying the given condition:
`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`
For the differential equation given, find a particular solution satisfying the given condition:
`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0` when x = 1
Solve the differential equation `(tan^(-1) x- y) dx = (1 + x^2) dy`
(x + tan y) dy = sin 2y dx
dx + xdy = e−y sec2 y dy
\[\frac{dy}{dx}\] = y tan x − 2 sin x
Find the general solution of the differential equation \[x\frac{dy}{dx} + 2y = x^2\]
Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]
Solve the following differential equation: \[\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx\] .
Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .
Find the integerating factor of the differential equation `xdy/dx - 2y = 2x^2` .
Solve the differential equation: `(1 + x^2) dy/dx + 2xy - 4x^2 = 0,` subject to the initial condition y(0) = 0.
Solve the following differential equation:
`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`
Solve the following differential equation:
`"dy"/"dx" + "y" * sec "x" = tan "x"`
Solve the following differential equation:
`"x" "dy"/"dx" + "2y" = "x"^2 * log "x"`
Solve the following differential equation:
`("x + a")"dy"/"dx" - 3"y" = ("x + a")^5`
Solve the following differential equation:
`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`
Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.
`(x + 2y^3 ) dy/dx = y`
Integrating factor of `dy/dx + y = x^2 + 5` is ______
The equation x2 + yx2 + x + y = 0 represents
State whether the following statement is true or false.
The integrating factor of the differential equation `(dy)/(dx) + y/x` = x3 is – x.
If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.
If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3) x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.
If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.
The solution of the differential equation `dx/dt = (xlogx)/t` is ______.
Find the general solution of the differential equation:
`(x^2 + 1) dy/dx + 2xy = sqrt(x^2 + 4)`
Solve the differential equation `dy/dx+2xy=x` by completing the following activity.
Solution: `dy/dx+2xy=x` ...(1)
This is the linear differential equation of the form `dy/dx +Py =Q,"where"`
`P=square` and Q = x
∴ `I.F. = e^(intPdx)=square`
The solution of (1) is given by
`y.(I.F.)=intQ(I.F.)dx+c=intsquare dx+c`
∴ `ye^(x^2) = square`
This is the general solution.
Solve:
`xsinx dy/dx + (xcosx + sinx)y` = sin x
The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.