English

For the differential equation, find the general solution: xdydx + 2y=x2logx - Mathematics

Advertisements
Advertisements

Question

For the differential equation, find the general solution:

`x dy/dx +  2y= x^2 log x`

Sum

Solution

The given equation

`x dy/dx + 2y = x^2 log x`

or `dy/dx + (2/x)y = x log x`

Comparing with `dy/dx + Py = Q`,

P = `2/x` and Q = x log x

∴ I.F. = `e^(int P dx) = e^(int_x^2 dx)`

`= e^(2 log x) = e^(log x^2) = x^2`

Hence the required solution

∴ y × I.F. = ∫ Q × I.F. dx + C

⇒ y × x2 = ∫ x2 + x log x dx + C

⇒ x2 y = ∫ x3 log x + C

⇒ x2 y = `log x * x^4/4 - int 1/4 * x^4/4 dx + C`

⇒ x2 y = `x^4/4 log x - 1/4 int x^3 dx + C`

⇒ x2 y = `x^4/4 log x - 1/4 xx x^4/4 + C`

⇒ y = `x^2/16 (4 log x - 1) + C/x^2`

Which is the required solution.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.6 [Page 413]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.6 | Q 6 | Page 413

RELATED QUESTIONS

Find the the differential equation for all the straight lines, which are at a unit distance from the origin.


For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`x log x dy/dx + y=    2/x log x`


For the differential equation, find the general solution:

(1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)


For the differential equation, find the general solution:

`x dy/dx + y - x + xy cot x = 0(x != 0)`


For the differential equation, find the general solution:

`(x + y) dy/dx = 1`


For the differential equation, find the general solution:

`(x + 3y^2) dy/dx = y(y > 0)`


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


The population of a village increases continuously at the rate proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009?


\[\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}\]

\[y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0\]

 


(x + tan y) dy = sin 2y dx


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[\frac{dy}{dx} - y = x e^x\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


Solve the differential equation \[\frac{dy}{dx}\] + y cot x = 2 cos x, given that y = 0 when x = \[\frac{\pi}{2}\] .


Solve the following differential equation:-
\[\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)\]


Find the integerating factor of the differential equation `x(dy)/(dx) - 2y = 2x^2`


Solve the differential equation: (1 +x) dy + 2xy dx = cot x dx 


Solve the following differential equation:

`cos^2 "x" * "dy"/"dx" + "y" = tan "x"`


Solve the following differential equation:

`("x" + 2"y"^3) "dy"/"dx" = "y"`


Solve the following differential equation:

`(1 - "x"^2) "dy"/"dx" + "2xy" = "x"(1 - "x"^2)^(1/2)`


If the slope of the tangent to the curve at each of its point is equal to the sum of abscissa and the product of the abscissa and ordinate of the point. Also, the curve passes through the point (0, 1). Find the equation of the curve.


`(x + 2y^3 ) dy/dx = y`


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


The solution of `(1 + x^2) ("d"y)/("d"x) + 2xy - 4x^2` = 0 is ______.


The equation x2 + yx2 + x + y = 0 represents


The integrating factor of the differential equation `x (dy)/(dx) - y = 2x^2` is


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If the slope of the tangent at (x, y) to a curve passing through `(1, π/4)` is given by `y/x - cos^2(y/x)`, then the equation of the curve is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


If sec x + tan x is the integrating factor of `dy/dx + Py` = Q, then value of P is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×