English

Solve the following differential equation: y dx + (x - y2) dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation:

y dx + (x - y2) dy = 0

Sum

Solution

y dx + (x - y2) dy = 0

∴ y dx = - (x - y2) dy

∴ `"dx"/"dy" = - (("x - y"^2))/"y" = - "x"/"y" + "y"`

∴ `"dx"/"dy" + (1/"y") * "x" = "y"`     ....(1)

This is the linear differential equation of the form

`"dx"/"dy" + "P" * "x" = "Q"`, where P = `1/"y"` and Q = y

∴ I.F. = `"e"^(int "P dy") = "e"^(int 1/"y" "dy") = "e"^(log "y") = "y"`

∴ the solution of (1) is given by

`"x" * ("I.F.") = int "Q" * (I.F.) "dy" + "c"_1`

∴ `"xy" = int "y" * "y"  "dy" + "c"_1`

∴ `"xy" = int "y"^2 "dy" + "c"_1`

∴ `"xy" = "y"^3/3 + "c"_1`

∴ `"y"^3/3 = "xy" + "c"`, where c = -c1 

This is the general solution.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.5 [Page 206]

APPEARS IN

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx  + 2y = sin x`


For the differential equation, find the general solution:

`dy/dx + 3y = e^(-2x)`


For the differential equation, find the general solution:

`dy/dx + y/x = x^2`


For the differential equation, find the general solution:

`dy/dx + (sec x) y = tan x (0 <= x < pi/2)`


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx + 2y tan x = sin x; y = 0 " when x " = pi/3`


For the differential equation given, find a particular solution satisfying the given condition:

`(1 + x^2)dy/dx + 2xy = 1/(1 + x^2); y = 0`  when x = 1


For the differential equation given, find a particular solution satisfying the given condition:

`dy/dx - 3ycotx = sin 2x; y = 2`  when `x = pi/2`


Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.


The integrating factor of the differential equation.

`(1 - y^2) dx/dy + yx = ay(-1 < y < 1)` is ______.


Find the general solution of the differential equation `dy/dx - y = sin x`


Solve the differential equation `x dy/dx + y = x cos x + sin x`,  given that y = 1 when `x = pi/2`


x dy = (2y + 2x4 + x2) dx


\[\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)\]

\[x\frac{dy}{dx} + 2y = x \cos x\]

Find the general solution of the differential equation \[\frac{dy}{dx} - y = \cos x\]


Solve the differential equation \[\left( y + 3 x^2 \right)\frac{dx}{dy} = x\]


If f(x) = x + 1, find `"d"/"dx"("fof") ("x")`


Solve the following differential equation:

`"dy"/"dx" + "y"/"x" = "x"^3 - 3`


Solve the following differential equation:

`("x + y") "dy"/"dx" = 1`


Solve the following differential equation dr + (2r cot θ + sin 2θ) dθ = 0.


Solve the following differential equation:

`(1 + "x"^2) "dy"/"dx" + "y" = "e"^(tan^-1 "x")`


Find the equation of the curve passing through the point `(3/sqrt2, sqrt2)` having a slope of the tangent to the curve at any point (x, y) is -`"4x"/"9y"`.


The curve passes through the point (0, 2). The sum of the coordinates of any point on the curve exceeds the slope of the tangent to the curve at any point by 5. Find the equation of the curve.


The integrating factor of `(dy)/(dx) + y` = e–x is ______.


Find the general solution of the equation `("d"y)/("d"x) - y` = 2x.

Solution: The equation `("d"y)/("d"x) - y` = 2x

is of the form `("d"y)/("d"x) + "P"y` = Q

where P = `square` and Q = `square`

∴ I.F. = `"e"^(int-"d"x)` = e–x

∴ the solution of the linear differential equation is

ye–x = `int 2x*"e"^-x  "d"x + "c"`

∴ ye–x  = `2int x*"e"^-x  "d"x + "c"`

= `2{x int"e"^-x "d"x - int square  "d"x* "d"/("d"x) square"d"x} + "c"`

= `2{x ("e"^-x)/(-1) - int ("e"^-x)/(-1)*1"d"x} + "c"`

∴ ye–x = `-2x*"e"^-x + 2int"e"^-x "d"x + "c"`

∴ e–xy = `-2x*"e"^-x+ 2 square + "c"`

∴ `y + square + square` = cex is the required general solution of the given differential equation


The integrating factor of the differential equation sin y `("dy"/"dx")` = cos y(1 - x cos y) is ______.


The integrating factor of the differential equation (1 + x2)dt = (tan-1 x - t)dx is ______.


Which of the following is a second order differential equation?


The equation x2 + yx2 + x + y = 0 represents


The integrating factor of differential equation `(1 - y)^2  (dx)/(dy) + yx = ay(-1 < y < 1)`


Let y = y(x), x > 1, be the solution of the differential equation `(x - 1)(dy)/(dx) + 2xy = 1/(x - 1)`, with y(2) = `(1 + e^4)/(2e^4)`. If y(3) = `(e^α + 1)/(βe^α)`, then the value of α + β is equal to ______.


If y = y(x) is the solution of the differential equation, `(dy)/(dx) + 2ytanx = sinx, y(π/3)` = 0, then the maximum value of the function y (x) over R is equal to ______.


Let y = y(x) be the solution curve of the differential equation `(dy)/(dx) + ((2x^2 + 11x + 13)/(x^3 + 6x^2 + 11x + 6)) y = ((x + 3))/(x + 1), x > - 1`, which passes through the point (0, 1). Then y(1) is equal to ______.


If the solution curve y = y(x) of the differential equation y2dx + (x2 – xy + y2)dy = 0, which passes through the point (1, 1) and intersects the line y = `sqrt(3)  x` at the point `(α, sqrt(3) α)`, then value of `log_e (sqrt(3)α)` is equal to ______.


The solution of the differential equation `dx/dt = (xlogx)/t` is ______.


Solve the differential equation `dy/dx+2xy=x` by completing the following activity.

Solution: `dy/dx+2xy=x`       ...(1)

This is the linear differential equation of the form `dy/dx +Py =Q,"where"`

`P=square` and Q = x

∴ `I.F. = e^(intPdx)=square`

The solution of (1) is given by

`y.(I.F.)=intQ(I.F.)dx+c=intsquare  dx+c`

∴ `ye^(x^2) = square`

This is the general solution.


The slope of tangent at any point on the curve is 3. lf the curve passes through (1, 1), then the equation of curve is ______.


The slope of the tangent to the curve x = sin θ and y = cos 2θ at θ = `π/6` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×